Science and Application of Nanotubes

Edited by:
David Tománek
Richard Enbody

Kluwer Academic Publishers (available as of early March, 2000)

ISBN 0-306-46372-5

For the discounted order form click HERE.

 

TABLE OF CONTENTS

Part I: Morphology, Characterization, and Formation of Nanotubes
 
Filling Carbon Nanotubes Using an Arc Discharge 1
    A. Loiseau, N. Demoncy, O. Stéphan, C. Colliex, and H. Pascard
 
Simulation of STM Images and STS Spectra of Carbon Nanotubes 17
    Ph. Lambin, V. Meunier, and A. Rubio
 
Applications Research on Vapor-Grown Carbon Fibers 35
    G.G. Tibbetts, J.C. Finegan, J.J. McHugh, J.-M. Ting, D.G. Glasgow, and M.L. Lake
 
The Growth of Carbon and Boron Nitride Nanotubes:
A Quantum Molecular Dynamics Study 53
    Jean-Christophe Charlier, Xavier Blase, Alessandro De Vita, and Roberto Car
 
Nanoscopic Hybrid Materials: The Synthesis, Structure
and Properties of Peapods, Cats and Kin 67
    David E. Luzzi and Brian W. Smith
 
Linear Augmented Cylindrical Wave Method for Nanotubes:
Band Structure of [Cu@C20]oo 77
    Pavel N. D'yachkov and Oleg M. Kepp
 
Comparative Study of a Coiled Carbon Nanotube by Atomic
Force Microscopy and Scanning Electron Microscopy 83
    P. Simonis, A. Volodin, E. Seynaeve, Ph. Lambin, and C. Van Haesendonck
 
Investigation of the Deformation of Carbon Nanotube Composites
Through the Use of Raman Spectroscopy 93
    C.A. Cooper and R.J. Young
 
Electronic States, Conductance and Localization in
Carbon Nanotubes with Defects 103
    T. Kostyrko, M. Bartkowiak, and G.D. Mahan
 
Physics of the Metal-Carbon Nanotube Interfaces: Charge Transfers, Fermi-Level
"Pinning" and Application to the Scanning Tunneling Spectroscopy 121
    Yongqiang Xue and Supriyo Datta
 
Single Particle Transport Through Carbon Nanotube Wires: Effect of
Defects and Polyhedral Cap 137
    M.P. Anantram and T.R. Govindan
 
Carbon Nanotubes from Oxide Solid Solution: A Way to Composite
Powders, Composite Materials and Isolated Nanotubes 151
    Christophe Laurent, Alain Peigney, Emmanuel Flahaut, Revathi Bacsa, and Abel Rousset
 
Impulse Heating an Intercalated Compound Using a 27.12 MHz Atmospheric
Inductively Coupled Argon Plasma to Produce Nanotubular Structures 169
    Thomas J. Manning, Andrea Noel, Mike Mitchell, Angela Miller, William Grow,
    Greg Gaddy, Kim Riddle, Ken Taylor, Joseph Stach, and Thomas Vickers
 
The Synthesis of Single-Walled Carbon Nanotubes by CVD Catalyzed
with Mesoporous MCM-41 Powder 181
    Jun Li, Mawlin Foo, Ying Wang, Hou Tee Ng, Stephan Jaenicke, Guoqin Xu, and Sam F.Y. Li
 
 
Part II: Mechanical and Chemical Properties of Nanotubes
 
Mechanical Properties and Electronic Transport in Carbon Nanotubes 195
    J. Bernholc, M. Buongiorno Nardelli, J.-L. Fattebert, D. Orlikowski, C. Roland, and Q. Zhao
 
Electrochemical Storage of Hydrogen in Carbon Single Wall Nanotubes 205
    Christoph Nützenadel, Andreas Züttel, Christophe Emmenegger,
    Patrick Sudan, and Louis Schlapbach
 
Direct Measurement of Binding Energy Via Adsorption of Methane on SWNT 215
    S. Weber, S. Talapatra, C. Journet, and A. Migone
 
 
Part III: Electronic Properties of Nanotubes
 
Electrical Properties of Carbon Nanotubes:
Spectroscopy, Localization and Electrical Breakdown 223
    Phaedon Avouris, Richard Martel, Hiroya Ikeda, Mark Hersam,
    Herbert R. Shea, and Alain Rochefort
 
Field Emission of Carbon Nanotubes from Various Tip Structures 239
    Jisoon Ihm and Seungwu Han
 
First and Second-Order Resonant Raman Spectra of
Single-Walled Carbon Nanotubes 253
    M.S. Dresselhaus, M.A. Pimenta, K. Kneipp,
    S.D.M. Brown, P. Corio, A. Marucci, and G. Dresselhaus
 
On the pi-pi Overlap Energy in Carbon Nanotubes 275
    G. Dresselhaus, M.A. Pimenta, R. Saito, J.C. Charlier, S.D.M. Brown,
    P. Corio, A. Marucci, and M.S. Dresselhaus
 
Electronic and Mechanical Properties of Carbon Nanotubes 297
    L. Forró, J.-P. Salvetat, J.-M. Bonard, R. Bacsa, N.H. Thomson, S. Garaj,
    L. Thien-Nga, R. Gaál, A. Kulik, B. Ruzicka, L. Degiorgi, A. Bachtold,
    C. Schönenberger, S. Pekker, K. Hernadi
 
Low Energy Theory for STM Imaging of Carbon Nanotubes 321
    C.L. Kane and E.J. Mele
 
Quantum Transport in Inhomogeneous Multi-Wall Nanotubes 333
    S. Sanvito, Y.-K. Kwon, D. Tománek, and C.J. Lambert
 
Conductivity Measurements of Catalytically Synthesized Carbon Nanotubes 349
    M. Ahlskog, R.J.M. Vullers, E. Seynaeve, C. Van Haesendonck, A. Fonseca, and J.B. Nagy
 
 
Part IV: Applications of Nanotubes
 
Fabrication of Full-Color Carbon-Nanotubes Field-Emission Displays:
Large Area, High Brightness, and High Stability 355
    W.B. Choi, Y.H. Lee, D.S. Chung, N.S. Lee and J.M. Kim
 
Free Space Construction with Carbon Nanotubes 365
    George D. Skidmore, Matthew Ellis, and Jim Von Ehr
 
List of Participants 379
 
Glossary of Common Abbreviations 393
 
Index 395

 

 

SUBJECT INDEX

Applications, 35
Adsorption
     heat of, 217
     hydrogen, see Hydrogen storage
     isotherms, 217
     methane, 215
Arc-discharge synthesis, 1, 67-68, 94, 297
Atomic force microscopy (AFM), 83, 85, 300
     tapping mode, 85
Attachment of nanotubes, 371
 
Bucky-paper, 370
Bundles of nanotubes, see Ropes of nanotubes
    
C60 molecules, 2
     in peapods, see Peapods
Carbon arc, see Arc-discharge synthesis
Carbon fibers, 11
     adhesion of, 39
     air-etched, 47
     composites of, see Composites of fibers
     continuous formation of, 35-36
     elastic modulus, 41, 43-44, 46, 48-49
     electric conductance, 49
     graphitized, 47
     infiltration of polymers, 38
     modulus, see elastic modulus
     properties improvement, 48
     shear strength, 47
     tensile strength, 41-43, 46
     vapor-grown, 35-36
Carbon filaments, 35
     formation of, 35
Carbon nanotubes
     coiled, see Coiled nanotubes
     composites, see Composites of nanotubes
     conductance, see Electric transport
     defects in, see Defects in nanotubes
     electric properties, see Electric properties
     filling, see Filling of nanotubes
     field emission, see Field electron emission
     growth, see Growth mechanism
     magnetic properties, see Magnetic properties
     mechanical properties, see Mechanical
     properties
     morphology, see Morphology of nanotubes
     purification, see Synthesis of nanotubes,
     purification
     ropes of, see Ropes of nanotubes
     spiral, see Coiled nanotubes
     synthesis of, see Synthesis of nanotubes
     transport in, see Electric transport or Thermal transport
Catalytic synthesis, 12, 84-85, 152
Chemical composition, 5
Chemical vapor deposition synthesis, 152, 181, 299, 350
Coiled nanotubes, 83-84, 90, 224, 299, 304
     pitch of, 90
Combustion, 35
Composites of fibers, 41, 94, 98
     electric conductance, 49
Composites of nanotubes, 58, 93, 98
     Al2O3-based, 154
     deformation of, 93
     densification fracture, 164
     electric conductance, 166
     fracture strength, 165
     matrix reinforcement, 100
     matrix-nanotube interaction, 102
     mechanical properties, 93, 98, 100, 165
     MgAl2O4-based, 159
     MgO-based, 161
     nanotube-matrix interaction, 166
     metal-oxide composites, 152-153
Conductance of nanotubes, see Electric transport
Construction using nanotubes, 365
     attachment, see Attachment of nanotubes
     manipulation, see Manipulation of nanotubes
     multiple tube assembly, 374
     weaving, 374
Contact potential, 19
Cutting of nanotubes, 373
 
Defects in nanotubes, 28, 103, 128
     dilute disorder, 113
     formation of, 31
     heptagon, 84
     interference effects, 112
     local charge neutrality, 131
     localization length, 116
     Lyapunov exponents, 116
     pentagon, 84
     pentagon-heptagon pair, 29, 90
     scattering from defects, 109
     Stone-Wales, 17, 30-31, 196
Deformation of nanotubes, 95
     addimer-induced transformation, 198
Diffraction, 2, 7
Doping of nanotubes, 231
 
Electric properties, 223
     metallic CNTs, 22
     semiconducting CNTs, 22, 231
     work function of CNTs, 362
Electric transport 195, 223, 231
     Aharonov-Bohm effect, 306, 308
     anti-resonance, 144
     ballistic, 118, 137, 199, 305, 309, 334, 350, 352
     bent nanotubes, 236
     bond rotation defect, 144
     breakdown, 223, 229
     capped nanotubes, 137, 143
     coherence length, 223, 226, 309
     conductance, 22, 103-104, 129
     conductance quantization, 305, 333
     contact resistance, 349
     current densities, 229
     current-voltage characteristics, 351
     defect scattering, 137, 200
     dependence on energy, 339, 343
     diffusive, 308
     effect of tube diameter, 141
     fabrication of contacts, 351
     inhomogeneous multi-wall nanotubes, 342
     Kondo scattering, 228
     Landauer-Büttiker formalism, 107, 336
     localization, 118, 223
     localization length, 140
     Luttinger liquid behavior, 228, 305-306, 310
     magnetoresistance, 227, 308
     multi-wall nanotubes, 307, 338, 349
     non-ohmic, 231
     ohmic, 118
     quantum interference, 306
     quasi-ballistic, 309
     quasiparticle lifetime, 113
     resonances in transmission, 138
     scattering from, 322
     scattering theory of, see Scattering theory
     single-wall nanotubes, 307
     spin-orbit scattering, 228
     strong isolated defects, 141
     strong localization, 227
     sub-band contribution, 141
     superconductivity, 352
     temperature-dependent resistance, 307
     transmission gap, 142
     transmission probability, 138-140, 143, 336
     twisted nanotubes, 236
     universal conductance fluctuations, 227
     weak localization, 225
     weak uniform disorder, 140
     zero-bias anomaly, 228, 310
Electrodes
     graphite, 2, 6
Electrolysis, 2
Electron diffraction, 2
Electron energy loss spectroscopy (EELS), 2, 7
Electron irradiation, 302
Electron spin resonance, 311
     multi-wall tubes, 312
     single-wall tubes, 313
Electronic structure, 18, 123, 126
     band dispersion, 77, 79-80, 276
     band-bending in semiconducting nanotubes, 232
     charge density waves, 322
     charge transfer at interfaces, see Interface with metals, charge transfer
     D-band, 292
     density matrix, 322-323
     density of states, 139, 240, 253, 255-256, 311
     electron spin g-factor, 312
     electronic states, 103
     Fermi-level pinning, 121
     G' band, 293
     graphite, 20, 264, 281-282
     localized states, 103, 240
     metallic nanotubes, 278, 281
     multi-wall nanotubes, 338
     particle-hole state symmetry, 276
     pp-pi matrix element gamma0, 256, 275, 311
     pseudogaps, 24
     self-consistent potential, 124
     semiconducting nanotubes, 278, 281
     single-wall nanotubes, 17, 103, 137, 223, 321
     Slonczewski-Weiss-McClure band model, 275
     spin relaxation, 312
     spin susceptibility, 311
     spin-orbit coupling, 312
     tunneling states, 322
     van Hove singularities, 24, 280, 283, 309
Energy storage
     electrochemical double layer, 209
 
Field electron emission
     closed nanotubes, 315
     cold cathode, 355, 362
     current stability, 363
     current-voltage characteristics, 360
     densities of emitters in displays, 363
     display brightness, 359
     display characteristics, 359
     emission current, 362
     emitter array, 248
     Fowler-Nordheim theory, 239, 318
     field enhancement, 241, 245-248, 316, 360
     flat-panel display, 355, 359
     isolated multi-wall nanotubes, 314
     localized states, 246
     luminescence induced by, 317
     mechanism, 318
     nanotube cathode, 355, 362
     nanotube emitter array, 316
     onset electric field, 360
     open-ended nanotube emitter, 315
     uniformity, 360
Filling of nanotubes, 1, 3
     by C60, see Peapods
     by metals, 77, 81
     capillarity, 1
Formation process, see Growth mechanism or Synthesis of nanotubes
 
Graphite
     electrodes, see Electrodes, graphite
     electronic structure, see Electronic structure, graphite
     exfoliation of graphite, see Growth mechanism, graphite exfoliation
     fluorination, see Synthesis of nanotubes,
     fluorinated graphite
     phonon structure, see Phonon structure, graphite
Graphitization, 12
Growth mechanism, 2, 10, 53
     base growth, 163, 191
     boron nitride (BN) nanotubes, 53-54, 58, 62-63
     carbon nanotubes, 53-54, 190
     dynamics, 60
     frustration effects, 58
     frustration energies, 60
     graphite exfoliation, 171
     lip-lip interaction, 56
     multi-wall nanotubes (MWNTs), 57
     single-wall nanotubes (SWNTs), 54
     termination, 12
     tip-growth, 163, 191
     yarmulke-growth, 163
 
Heat conductance, see Thermal transport
Helicity, see Coiled nanotubes, pitch of
Hybrid assemblies of nanotubes, 67
Hydrogen storage, 215
     capacity, 209
     cyclic stability, 207
     electrochemical, 205
     reaction rate, 209
Hydrogenation of nanotubes, 302
 
Interface with metals, 121, 124, 127
     charge transfer, 124
Inter-wall coupling, 27
 
Junctions of nanotubes, 30
 
Light emission, 317
 
Magnetic properties, 312
Manipulation of nanotubes, 365
     attachment, see Attachment of nanotubes
Mechanical properties, 195, 297
     bending modulus, see Young's modulus
     disorder, 302
     ductile-brittle domain map, 198
     elastic modulus, see Young's modulus
     fracture toughness, 154
     mechanical strength, 300
     multi-wall nanotubes, 93-94, 100
     nanotube composites, see Composites of nanotubes
     nanotube ropes, 300
     tensile strength, 94
     Young's modulus, 94, 300
Metal-induced gap states (MIGS), 122, 132
Moiré super-pattern, 27
Molecular dynamics simulations, 53
Morphology of nanotubes, 58, 83
     achiral, see non-chiral
     armchair, 22, 24, 54, 60
     bundled, see Ropes of nanotubes
     capped, 216
     chiral, 17, 25-26
     coiled, see Coiled nanotubes
     diameter, 162, 187
     Euler's theorem, 55
     helical, see Coiled nanotubes
     multi-wall, 10, 27, 56
     non-chiral, 25
     rings, see Coiled nanotubes
     rippling in bent nanotubes, 304
     ropes, see Ropes of nanotubes
     single-wall, 10, 17, 54, 93-95, 122
     spiral, see Coiled nanotubes
     symmetry, 27-28
     terminating caps, 23, 27, 54
     twisted, 28, 236
     zig-zag, 24, 54, 61
 
Nanoencapsulates, 177
Nanotube ropes, see Ropes of nanotubes
Nanotubes
     boron nitride, 53
     carbon, see Carbon nanotubes
Nanowires, 2, 9-10
 
Optical conductivity of nanotubes, 306
 
Peapods, 67-68
Phase diagrams, 13-14
Phonon structure
     anti-Stokes spectra, 258
     combination modes, 266, 270
     D-band, 261
     dependence on tube diameter, 256
     G'-band, 261
     graphite, 264
     overtone modes, 266
     radial breathing mode, 253, 256
     resonant Raman scattering, see Raman
     spectroscopy, resonant
     Stokes spectra, 258
     tangential stretching mode, 253, 256
Pulsed laser vaporization synthesis, 67-68, 94
 
Quantum dots, 198
 
Raman spectroscopy, 93, 94
     resonant, 253, 256, 287
Ropes of nanotubes, 27,160-161, 182, 189, 374
 
Scanning electron microscopy (SEM), 83, 85
Scanning tunneling microscopy (STM), 17, 122, 286, 321
     atomic corrugation, 24
     bias-dependence of STM images in metallic nanotubes, 326
     bias-dependence of STM images in semiconducting nanotubes, 327
     current-voltage characteristics, 20-21
     geometric distortion, 26
     images, 20, 24
     Scanning tunneling spectroscopy (STS), 17, 22, 121, 129, 286
Scattering theory, 104, 333, 335
     transfer matrix approach, 105
     Schottky barrier, 122, 132
     Spectroscopy, 223, 236
     electron, see Electron energy loss
     spectroscopy (EELS), 2, 7
     optical transmission spectroscopy, 286
     Raman, see Raman spectroscopy
     tunneling, see Scanning tunneling spectroscopy (STS)
Stability
     structural, 58
     thermal, 229
Strain energy
     axial, 196
     bending, 59
Sulfide, 7-8
Sulfur, 2, 6, 9, 10-12
Surface treatment, 44
Synthesis of nanotubes
     arc discharge, see Arc-discharge synthesis
     catalytic, see Catalytic synthesis
     chemical vapor deposition (CVD), see Chemical vapor deposition synthesis
     CO disproportionation, 152
     electrolysis of molten salts, 151
     fluorinated graphite, 172
     inductively coupled plasma, 169, 170
     mesoporous templates, 182
     methane decomposition, 158
     powder synthesis, 152
     pulsed laser vaporization, see Pulsed laser vaporization synthesis
     purification of nanotubes, 297
     pyrolysis 2, 35, 151
     reduction of solid solutions, 152
     solar technique, 151
     spiral nanotubes, 299
     temperature range, 10
 
Tight-binding formalism, 18
Thermal transport, 229
Topology, see Morphology of nanotubes
Transmission electron microscopy (TEM), 2, 36, 68, 84
Tunneling processes, 18
 
Van Hove singularities, see Electronic structure, van Hove singularities

NT-99 Logo ... back to the NANOTUBE-99 Home Page
Nanotube-Site-Logo ... back to the Nanotube Site

David Tomanek at Michigan State University / tomanek@pa.msu.edu
Document href=http://www.pa.msu.edu/cmp/csc/NANOTUBE-99/publish/nt99-proc-contents.html
has been visited times since 27 October 1999.
Last update:   2020.07.24 (Friday) 14:38:50 EDT