
Nanoelectronics: From carbon nanostructures to 1D and 2D semiconductors beyond graphene*

David Tománek

Physics and Astronomy Department, Michigan State University, East Lansing, MI 48824, USA tomanek@pa.msu.edu http://www.pa.msu.edu/people/tomanek

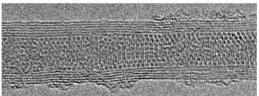


Figure 1. Top: Proposed formation mechanism of a helical phosohorus coil (Ref. [7]). Bottom: TEM micrograph of the coil/ring structure embedded in a nanotube (Ref. [8]).

If graphene had a band gap, it would probably be the optimum 2D system for electronics applications. Layered transition metal dichalcogenides (TMDs) with a robust intrinsic band gap appear as the nextbest alternative. Only after a long search, however, optimum strategies have been devised to make lowresistance, ohmic contacts to TMDs [1]. In the meantime, a new class of 2D semiconductors has been rapidly gaining attention, namely layered black phosphorus and related phosphorene monolayers [2]. These 2D systems display a tunable, direct fundamental band gap and thus are ideal candidates for optoelectronics applications. Recent Quantum Monte Carlo (QMC) calculations show that the interlayer bonding, while weak, is not well described by dispersive van der Waals (vdW) interactions [3]. QMC results differ qualitatively from vdW-enhanced DFT functionals and the common designation of similar systems as "van der Waals solids" is strictly incorrect. Also other group V systems including

monolayers of $As_x P_{1-x}[4]$, IV-VI compounds such as SiS [5] with the same average valence, and related 2D phosphorus carbide [6] share the same nonplanarity of their structure with phosphorene. Same as in phosphorene, the fundamental band gap in these systems depends sensitively on the number of layers and in-layer strain. Surprisingly, the story of group V semiconductors does not end with layered 2D systems. A previously unknown 1D structure of coiled phosphorus, shown in Fig. 1, represents the most stable P allotrope to date. The predicted structure [7] has recently been synthesized and contained inside carbon nanotubes [8]. In all cases, predictive *ab initio* calculations provide a useful guidance to experimental studies.

* Partly supported by the NSF/AFOSR EFRI 2-DARE grant number #EFMA-1433459.

References:

- [1] Jie Guan, Hsun-Jen Chuang, Zhixian Zhou, and David Tománek, ACS Nano 11, 3904 (2017).
- [2] H. Liu et al. ACS Nano 8, 4033 (2014).
- [3] L. Shulenburger, A.D. Baczewski, Z. Zhu, J. Guan, and D. Tománek, Nano Lett. 15, 8170 (2015).
- [4] Zhen Zhu, Jie Guan, and David Tománek, Nano Lett. 15, 6042 (2015).
- [5] Zhen Zhu, Jie Guan, Dan Liu, and David Tománek, ACS Nano 9, 8284 (2015).
- [6] Jie Guan, Dan Liu, Zhen Zhu, and David Tománek, Nano Lett. 16, 3247 (2016).
- [7] Dan Liu, Jie Guan, Jingwei Jiang, and David Tománek, Nano Lett. 16, 7865 (2016).
- [8] Jinying Zhang et al. Angew. Chem. Int. Ed. 56, 1850-1854 (2017).