PHY801: Survey of Atomic and Condensed Matter Physics Michigan State University

Homework 1 - Solution

1.1. Using a hydrogenic model, estimate the 1st ionization energy of a Li atom, assuming that the two electrons in the 1s state essentially screen the nuclear charge, thus making its effective charge $+1 e$. The observed value of the 1st ionization energy is 5.39 eV . Discuss possible physical reasons for the difference between the estimated and the observed value.

Solution:

Assuming naively that the nuclear charge is screened by the $1 s$ core electrons, we may consider this to be close to a hydrogen atom with the ionization potential of $I=13.6 \mathrm{eV}$. This is significantly more than the observed value.

Now, the valence electron is in the $2 s$, not $1 s$ state of the hydrogen atom. The ionization energy is much smaller, $I=$ Rydberg $/ n^{2}=13.6 / 4 \mathrm{eV}=3.4 \mathrm{eV}$.

Next, consider the fact that the $2 s$ electron penetrates the core region, where screening by the $1 s$ electrons is not that effective. This increase the attraction, thus increasing the binding energy from 3.4 eV to 5.39 eV .
1.2. Calculate the 3rd ionization energy of the Li atom. Is your answer exact?

Solution:

The binding energy of the $n^{t h}$ state is given by $E_{n}=-\frac{Z^{2}}{n^{2}}$ Ry. With $Z=3$ and $n=1$, the 3rd ionization energy of the Li atom is $I=9 \times 13.6 \mathrm{eV}=122.4 \mathrm{eV}$. This value is exact, since no other electrons are present.
1.3. What is the probability of finding the $1 s$ electron in Pb^{81+} inside the Pb nucleus? Assume that the nuclear radius $R=r_{0} A^{1 / 3}$, where $r_{0}=1.2$ fermi and A is the atomic mass number (which differs from the atomic number Z !) of Pb .

Solution:

Since the atomic number of Pb is $Z=82, \mathrm{~Pb}^{81+}$ contains only one electron and can be treated by the hydrogenic model with the length scale reduced by $Z=82$. The normalized wave function is given by

$$
\varphi_{1 s}=\frac{1}{\sqrt{\pi \tilde{a}_{B}^{3}}} e^{-\frac{r}{\hat{a}_{B}}},
$$

where we define a reduced Bohr radius by

$$
\tilde{a}_{B}=\frac{\hbar^{2}}{m e^{2} Z} .
$$

The probability to find the $1 s$ electron inside the nucleus of radius R is

$$
P=\int_{0}^{R}\left|\varphi_{1 s}\right|^{2} r^{2} d r d \Omega .
$$

First assume that the electron wave function decays very little (confirm this approximation later) and use its value at the origin. This gives

$$
P=\frac{1}{\pi \tilde{a}_{B}^{3}} V,
$$

where V is the volume of the nucleus. The mass number of Pb , which you can look up, is $A=207.19$ (this is an average over most abundant isotopes). Plugging in all the numbers you should find

$$
P=\frac{4}{3}\left(\frac{R}{\tilde{a}_{B}}\right)^{3}=2.1 \times 10^{-6} .
$$

This probability is quite small. The assumption of replacing the wave function by its value at the origin in the integral for P should thus be quite good.
1.4. Excitons in quantum wells and their binding energies can be approximated by a 2 -dimensional (2D) hydrogen atom model. To use this description, first separate the radial part $R(r)$ and the angular part $Y(\theta)$ of the wavefunctions in the Schrödinger equation. Show that the radial part of the wavefunctions is the solution of (in atomic units)

$$
\frac{1}{2}\left(R^{\prime \prime}+\frac{1}{r} R^{\prime}\right)-\frac{m^{2}}{2 r^{2}} R+\left(E+\frac{1}{r}\right) R=0 .
$$

The angular part of the wave functions is given by $e^{i m \theta} . R^{\prime}$ is the first and $R "$ the second derivative of $R(r)$ with respect to r. Use the same scaling that was used in the 3D case in defining the variable $\rho=\kappa r$. Use $\kappa=(-2 E)^{1 / 2}$ when writing down the second order differential equation for $R(\rho)$ in terms of the parameter $\rho_{0}=2 / \kappa$. How does $R(\rho)$ behave as $\rho \rightarrow 0$ and $\rho \rightarrow \infty$? Define a function $v(\rho)$ following the same procedure as in the 3D case. Solve this equation and identify physical solutions, which provide the spectrum of the 2D hydrogen atom.

Solution:

$$
\left[-\frac{1}{2} \nabla^{2}-\frac{1}{r}\right] \phi(\vec{r})=E \phi(\vec{r}), \text { where } \vec{r}=(r, \theta) .
$$

Then separate

$$
\phi(\vec{r})=R(r) Y(\theta)
$$

and use the expression

$$
\nabla^{2}=\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}\right)
$$

in 2D. The Schrödinger equation then becomes

$$
\begin{array}{r}
\frac{2 r^{2}}{2 R}\left(\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}\right)+\frac{1}{Y} \frac{d^{2} Y}{d \theta^{2}}+2 r^{2}\left(\frac{1}{r}+E\right)=0 \text { for all } r \text { and } \theta \\
\frac{1}{Y} \frac{d^{2} Y}{d \theta^{2}}=-m^{2} \\
\frac{1}{2}\left(\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}\right)-\frac{m^{2}}{2 r^{2}} R+\left(\frac{1}{r}+E\right) R=0
\end{array}
$$

In 3D this becomes

$$
\frac{1}{2}\left(\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}\right)-\frac{l(l+1)}{2 r^{2}} R+\left(\frac{1}{r}+E\right) R=0 .
$$

To solve the 2D case, same as in 3D, use $\kappa=\sqrt{-2 E}, \rho=\kappa r$, and $\rho_{0}=2 / \kappa$. Then,

$$
\frac{d^{2} R}{d \rho^{2}}+\frac{1}{\rho} \frac{d R}{d \rho}-\frac{m^{2}}{\rho^{2}} R+\left(\frac{\rho_{0}}{\rho}-1\right) R=0
$$

The spectrum is symmetric under $m \rightarrow-m$. So we can choose $m \geq 0$. After looking at the $\rho \rightarrow 0$ and $\rho \rightarrow \infty$ behavior of $R(\rho)$, we define $R(\rho)=\rho^{m} e^{-\rho} v(\rho)$, where $v(\rho)$ satisfies

$$
\rho v^{\prime \prime}(\rho)+(2 m+1-2 \rho) v^{\prime}-\left(2 m+1-\rho_{0}\right) v=0
$$

with

$$
v^{\prime \prime}=\frac{d^{2} v}{d \rho^{2}} \text { and } v^{\prime}=\frac{d v}{d \rho} .
$$

Now use a power series expansion for

$$
v(\rho)=\sum_{0}^{\infty} c_{j} \rho^{j}
$$

Substitute $v(\rho)$ in the above differential equation for $v(\rho)$ and equate terms with the same power of ρ^{j}. Then you get

$$
c_{j+1}=\frac{2 j+2 m+1-\rho_{0}}{j(j+1)+(j+1)(2 m+1)} c_{j} .
$$

For bound-state solutions, as in the 3D case, the power series for $v(\rho)$ must terminate. This gives

$$
\rho_{0}=2 j_{\max }+2|m|+1 \text { for } j_{\max } \geq 0
$$

where we have used the $m=-m$ symmetry to replace m by $|m|$. Finally we get

$$
\begin{array}{r}
\rho_{0}=2 k+1 \text { with } k=0,1,2, \ldots ; \\
\kappa=\frac{2}{\rho_{0}}=\frac{2}{2 k+1} ; \\
E=-\frac{1}{2} \kappa^{2}=-\frac{1}{2} \frac{1}{(k+1 / 2)^{2}} \text { with } k=0,1,2, \ldots ;
\end{array}
$$

Using

$$
n=k+1
$$

we get

$$
E=-\frac{1}{2} \frac{1}{(n-1 / 2)^{2}} \text { with } n=1,2,3, \ldots .
$$

