PHY801: Survey of Atomic and Condensed Matter Physics
Michigan State University

Homework 2 — Solution

2.1. Calculate the ground state energy of a hydrogen atom using the variational principle. Assume that
the variational wave function is a Gaussian of the form

Ne_(é)Q ,

where N is the normalization constant and « is a variational parameter. How does this variational energy
compare with the exact ground state energy?

You will need these integrals:
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Solution:
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Change variable to z = \/ig to get for the denominator
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In the numerator, we consider the kinetic and the potential part separately. For the kinetic part, we get
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Change the variable again to z = \@2 to obtain
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Consequently,
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Similarly,
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Combining all our results, the trial energy (variational energy) is
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Minimizing the trial energy with respect to the variable o, we get
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This is about 2 eV higher than the exact energy. Not bad!

Thus,
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2.2. Use the virial theorem which states that 2 < T >=< 7- VV >and show that for the hydrogen atom
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Solution:
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For the n'* energy level,
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2.3. Use the Hellmann-Feynman theorem, which states that
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to show that for a hydrogen atom
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Solution:
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has been worked out in Class using the Hellmann-Feynman theorem and e? = X as a parameter. So we

only need to prove
1
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After separating the radial and angular parts, the effective Hamiltonian for the hydrogen atom can be
written as
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The Hellmann-Feynman theorem gives
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2.4. Using the first order perturbation results for ETS}LB,, where mv denotes mass-velocity, and for Egi),
where so denotes spin-orbit, show that
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where fs denotes fine structure and j is the total angular momentum containing orbital angular momen-
tum plus spin.




Solution:
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Adding the two expressions we obtain Ej(fls) Since s = 1/2, we have j =1+ 1/2 or j =1 — 1/2. This
means that [ = j —1/2 or | = j 4+ 1/2. Eliminate [ from the above equation for each value of I. Do the
algebra and you will get the answer in terms of j.




