PHY801: Survey of Atomic and Condensed Matter Physics Michigan State University

Homework 3 - Solution

3.1. Consider an open-shell atom with 4 electrons in the p-shell $\left(p^{4}\right)$, such as the oxygen atom.
(i) What is the total number of configurations? Just give the number.
(ii) What are the different multiplets ${ }^{2 S+1} L_{J}$ for this open-shell atom? Give their degeneracies.
(iii) What is the lowest-energy multiplet according to the Hund's 1st rule (ignore the spin-orbit interaction)?
(iv) What is the lowest energy multiplet after the spin-orbit interaction is considered $\left(H_{s o}=\lambda_{s o} \vec{L} \cdot \vec{S}\right)$?
(v) What is the spin-orbit splitting?

Solution:

(i) $\binom{6}{4}=\frac{6!}{4!2!}=\frac{6 \times 5}{2}=15$.
(ii) ${ }^{3} P_{J}$, degeneracy $(2 L+1) \times(2 S+1)=(2 \times 1+1) \times(2 \times 1+1)=9$
${ }^{1} D_{2}$, degeneracy $=(2 \times 2+1) \times(2 \times 0+1)=5$
${ }^{1} S_{0}$, degeneracy $=(2 \times 0+1) \times(2 \times 0+1)=1$
Total number of states $=9+5+1=15$ (agrees with (i)). See Fig. 1 for the individual states.

Figure 1: Distributing 4 electrons in 6 one-electron states
(iii) According to Hund's 1st rule, the multiplet with highest spin multiplicity should have the lowest energy. It is ${ }^{3} P_{J}$.
(iv) Since $L=1$ and $S=1$ for the multiplet ${ }^{3} P_{J}$, thus $J=2,1,0$.

Using $E(L, S, J)=\left(\lambda_{s o} / 2\right)[J(J+1)-L(L+1)-S(S+1)]$, the energies of the states with different
J values are:
$E(1,1,2)=\lambda_{\text {so }}$
$E(1,1,1)=-\lambda_{s o}$
$E(1,1,0)=-2 \lambda_{s o}$.
According to Hund's 3rd rule for more than half-filled shell, the multiplet with the highest $J=L+S$ value has the lowest energy. This means that $E(1,1,2)$ should be lowest. This happens because for more than half-filled shell, the spin-orbit coupling constant $\lambda_{s o}<0$.
(v) You can calculate the splitting!
3.2. Using Hund's three rules, work out the lowest energy multiplets of $d^{1}, d^{3}, d^{4}, d^{7}$ and f^{1}, f^{3}, f^{7}. Compare your results given in Table 1 and 2 of the Chapter on Diamagnetism and Paramagnetism in Kittel (Ch. 14 in 7th edition, Ch. 11 in 8th edition). Next, calculate the Landé g-factors associated with these lowest-energy multiplets. (Once you know how to do it for a few cases, it should be straight-forward to do the rest.)

Solution: d^{n}
$\mathrm{n}=1:{ }^{2} D_{3 / 2}$
$\mathrm{n}=3:{ }^{4} F_{3 / 2}$
$\mathrm{n}=4:{ }^{5} D_{0}$
$\mathrm{n}=7:{ }^{4} F_{9 / 2}$
f^{n}
$\mathrm{n}=1:{ }^{2} F_{5 / 2}$
$\mathrm{n}=3:{ }^{4} L=6_{9 / 2}$
$\mathrm{n}=7:{ }^{8} S_{7 / 2}$.
Practice how to calculate the Landé g-factor and effective moment for these multiplets.
3.3. The wave function of the hydrogen atom in its $1 s$ ground state is $\psi=\left(\pi a_{B}^{3}\right)^{-1 / 2} \exp \left(-r / a_{B}\right)$, where a_{B} is the Bohr radius. Show that for this state $\left.<r^{2}\right\rangle=3 a_{B}^{2}$ and calculate the diamagnetic susceptibility for 1 mole of atomic hydrogen enclosed in unit volume. The correct answer is $-2.32 \times 10^{-6} \mathrm{~cm}^{3} / \mathrm{mole}$.

Solution:

$$
\begin{aligned}
\psi_{1 s} & =\frac{1}{\sqrt{\pi a_{B}^{3}}} e^{-r / a_{B}} \\
<r^{2}> & =\int \psi_{1 s}^{*} r^{2} \psi_{1 s} d \vec{r}=\frac{4 \pi}{\pi a_{B}^{3}} \int_{0}^{\infty} e^{-2 r / a_{B}} r^{2} r^{2} d r=\frac{a_{B}^{2}}{8} \int_{0}^{\infty} e^{-x} x^{4} d x=\frac{a_{B}^{2}}{8} 4!=3 a_{B}^{2},
\end{aligned}
$$

where we have used the substitution $x=2 r / a_{B}$.
The diamagnetic susceptibility for Avogadros number of atoms is given by

$$
\chi_{\text {dia }}=-N_{A} \frac{e^{2}}{6 m c^{2}}<r^{2}>=-N_{A} \frac{e^{2} 3 a_{B}^{2}}{6 m c^{2}}=-N_{A} \frac{e^{2} / 2 a_{B}}{m c^{2}} a_{B}^{3} .
$$

Now use

$$
\frac{e^{2}}{2 a_{B}}=13.6 \mathrm{eV} ; \quad m c^{2}=0.522 \mathrm{MeV} ; \quad a_{B}=0.529 \times 10^{-10} \mathrm{~m} ; \quad N_{A}=6.022 \times 10^{23} \mathrm{~mole}^{-1}
$$

to get $\chi_{\text {dia }}=-2.32 \times 10^{-6} \mathrm{~cm}^{3} /$ mole .
3.4. Consider the multiplet (L, S, J). Show that the average magnetization $<M>$ for N atoms the presence of an external uniform magnetic field B along the z direction is given by

$$
<M>=N \mu_{B} g_{J} J B_{J}(x),
$$

where

$$
x=g_{J} \mu_{B} J B / k_{B} T
$$

and

$$
B_{J}(x)=\frac{2 J+1}{2 J} \operatorname{coth}\left(\frac{(2 J+1) x}{2 J}\right)-\frac{1}{2 J} \operatorname{coth}\left(\frac{x}{2 J}\right)
$$

is the Brillouin function.

Solution:

For a general state $J m_{J}$ the energy in the presence of a magnetic field and the magnetic moment are given by

$$
E\left(J, m_{J}\right)=\mu_{B} g_{J} m_{J} B ; \mu\left(J, m_{J}\right)=-\mu_{B} g_{J} m_{J}
$$

Therefore, at a temperature T, the average magnetic moment of one atom can be obtained by using Boltzmann distribution, as

$$
<M>=\frac{-\sum_{m_{J}=-J}^{m_{J}=+J} \mu_{B} g_{J} m_{J} e^{-\mu_{B} g_{J} m_{J} B / k_{B} T}}{\sum_{m_{J}=-J}^{m_{J}=+J} e^{-\mu_{B} g_{J} m_{J} B / k_{B} T}} .
$$

Put $\mu_{B} g_{J} B / k_{B} T=y$. Then, the average magnetization is given by

$$
<M>=\mu_{B} g_{J} \frac{-\sum_{m_{J}=-J}^{m_{J}=+J} m_{J} e^{-y m_{J}}}{\sum_{m_{J}=-J}^{m_{J}=+J} e^{-y m_{J}}}=\mu_{B} g_{J} \frac{d}{d y} \ln \sum_{m_{J}=-J}^{m_{J}=+J} e^{-y m_{J}}=\mu_{B} g_{J} \frac{d}{d y} \ln S
$$

Here,

$$
S=\sum_{m_{J}=-J}^{m_{J}=+J} e^{-y m_{J}}=\frac{e^{J y}\left(1-e^{-(2 J+1) y}\right)}{\left(1-e^{-y}\right)}=\frac{\left[e^{\left(J+\frac{1}{2}\right) y}-e^{-\left(J+\frac{1}{2}\right) y}\right]}{\left[e^{y / 2}-e^{-y / 2}\right]} .
$$

Then,

$$
\frac{d}{d y} \ln S=\frac{2 J+1}{2} \operatorname{coth}(2 J+1) \frac{y}{2}-\frac{1}{2} \operatorname{coth} \frac{y}{2} .
$$

Substituting for y we get for N atomic magnets

$$
<M>=N \mu_{B} g_{J} J\left[\frac{(2 J+1)}{2 J} \operatorname{coth} \frac{(2 J+1) \mu_{B} g_{J} B}{2 k_{B} T}-\frac{1}{2 J} \operatorname{coth} \frac{\mu_{B} g_{J} B}{2 k_{B} T}\right] .
$$

Kittel, in his book, defines the quantity $\mu \equiv \mu_{B} g_{J}$. We next define a dimensionless quantity x by

$$
x=\frac{\mu_{B} g_{J} J B}{k_{B} T}=\frac{\mu J B}{k_{B} T} .
$$

We then get the average magnetic moment

$$
<M>=N \mu_{B} g_{J} J B_{J}(x),
$$

where

$$
B_{J}(x)=\frac{2 J+1}{2 J} \operatorname{coth}\left(\frac{(2 J+1) x}{2 J}\right)-\frac{1}{2 J} \operatorname{coth}\left(\frac{x}{2 J}\right)
$$

is the Brillouin function.

