PHY801: Survey of Atomic and Condensed Matter Physics
Michigan State University

Homework 3 — Solution

3.1. Consider an open-shell atom with 4 electrons in the p-shell (p*), such as the oxygen atom.
(i) What is the total number of configurations? Just give the number.
(ii) What are the different multiplets 21 L for this open-shell atom? Give their degeneracies.

(ili) What is the lowest-energy multiplet according to the Hund’s 1st rule (ignore the spin-orbit interac-
tion)?

(iv) What is the lowest energy multiplet after the spin-orbit interaction is considered (Hyo = AsoL-S)?

(v) What is the spin-orbit splitting?

Solution:

(ii) 3Py, degeneracy (2L +1)x(2S+1)= (2x1+1)x(2x1+1)=9
Dy, degeneracy = (2x2+1)x(2x0+1) =5
1Sy, degeneracy = (2x0+1)x(2x0+1) =1
Total number of states = 9+5+1=15 (agrees with (i)). See Fig. 1 for the individual states.
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Figure 1: Distributing 4 electrons in 6 one-electron states

(iii) According to Hund’s 1st rule, the multiplet with highest spin multiplicity should have the lowest
energy. It is 3P;.

(iv) Since L =1 and S = 1 for the multiplet 3Py, thus J = 2, 1,0.
Using E(L, S, J) = (Aso/2)[J(J +1) — L(L+1) —S(S +1)], the energies of the states with different



J values are:

E(1,1,2) = Xy

E(1,1,1) = =Xy

E(1,1,0) = =2, .

According to Hund’s 3rd rule for more than half-filled shell, the multiplet with the highest J = L+ .S
value has the lowest energy. This means that FE(1,1,2) should be lowest. This happens because for
more than half-filled shell, the spin-orbit coupling constant As, < 0.

(v) You can calculate the splitting!

3.2. Using Hund’s three rules, work out the lowest energy multiplets of d', d3, d*, d” and f', f3, f7.
Compare your results given in Table 1 and 2 of the Chapter on Diamagnetism and Paramagnetism in
Kittel (Ch. 14 in 7th edition, Ch. 11 in 8th edition). Next, calculate the Landé g-factors associated with
these lowest-energy multiplets. (Once you know how to do it for a few cases, it should be straight-forward
to do the rest.)

Solution: d"™

n=1: 2D3/2
n=3: F3/2
n=4: °D,
n="7: ‘Fy,

f?’L

n=1: F5/2
n=3: L = 69,3
n="7: 857/2

Practice how to calculate the Landé g-factor and effective moment for these multiplets.

3.3. The wave function of the hydrogen atom in its 1s ground state is ¢ = (wa%)~"2exp(—r/ap), where

ap is the Bohr radius. Show that for this state < r? >= 3a% and calculate the diamagnetic suscepti-
bility for 1 mole of atomic hydrogen enclosed in unit volume. The correct answer is —2.32x 1076 ¢cm3 /mole.

Solution:
wls = L €_r/aB
Jrad,
. Y a% [ a?
<rt> = /wfsrzl/}lsdr = — e 2r/aB 22 g — —B/ e Tartde = B4l = 3a% ,
way Jo 8 Jo 8

where we have used the substitution x = 2r/ap.

The diamagnetic susceptibility for Avogadros number of atoms is given by

2 29 92 2
e 9 e“3ay e”/2ap
<r“>=-—N, =—-N
6mc? A 6me? A

3
dia — —NA ap .
Xdia ch B

Now use

62

50 = 13.6 eV ; mc® =0.522MeV ; ag = 0.529x10"% m: Ny = 6.022x10% mole™?
ap

to get Xaia = —2.32x107% ecm?/mole.




3.4. Consider the multiplet (L, S, J). Show that the average magnetization < M > for N atoms the
presence of an external uniform magnetic field B along the z direction is given by

<M >= Nupg,JB;(x),

where
x = gjupJB/kgT

2 1 2 1 1
Bj(xz) = J2j coth ((J;:])x> — — coth <x>

and

is the Brillouin function.

Solution:

For a general state Jmj the energy in the presence of a magnetic field and the magnetic moment are
given by
E(J,my) = ppgymyB i p(J,my) = —ppgsmy .

Therefore, at a temperature 7', the average magnetic moment of one atom can be obtained by using
Boltzmann distribution, as

my=tJ - B/kpT

Zz‘]ii’g e*ﬂBngJB/kBT
J=

<M >=

Put upgsB/kpT = y. Then, the average magnetization is given by

DA fom d. M= d
<M >=pupgs TZ;'FJFJJ =upgs—In Y e V™ =pupg;—InS .
ZmJ:*J e"ymJ dy my=—J dy
Here,
my=+J ey (1 _ 6—(2J+1)y) {Q(H%)y _ e%ﬂé)y]
S — Z e_ym‘] = =
= (1 — e—y) [ey/Q — e_y/2]
Then,
d 2J+1 y 1 Y
—InS = th(2 1)= — —coth = .
& nsS 5 ©O (2J + )2 5 coth 5
Substituting for y we get for N atomic magnets
(27 +1) (2J +DupgsB 1 (9. B
M >= N J th — —coth
D B VA 2T 2.7 ‘" 2kpT

Kittel, in his book, defines the quantity u = upgs. We next define a dimensionless quantity « by

v pBgsJB _ pJB
kT kT

We then get the average magnetic moment

<M >= Nupg;JB;(x),

2 1 2 1 1
Bj(z) = J2}_ coth ((J;:])x> — — coth <x>

where

is the Brillouin function.




