
PHY801: Survey of Atomic and Condensed Matter Physics
Michigan State University

Homework 3 – Solution

3.1. Consider an open-shell atom with 4 electrons in the p-shell (p4), such as the oxygen atom.

(i) What is the total number of configurations? Just give the number.

(ii) What are the different multiplets 2S+1LJ for this open-shell atom? Give their degeneracies.

(iii) What is the lowest-energy multiplet according to the Hund’s 1st rule (ignore the spin-orbit interac-
tion)?

(iv) What is the lowest energy multiplet after the spin-orbit interaction is considered (Hso = λso~L·~S)?

(v) What is the spin-orbit splitting?

Solution:

(i)
(6
4

)
= 6!

4!2! = 6×5
2 = 15.

(ii) 3PJ , degeneracy (2L+ 1)×(2S + 1) = (2×1 + 1)×(2×1 + 1) = 9
1D2 , degeneracy = (2×2 + 1)×(2×0 + 1) = 5
1S0 , degeneracy = (2×0 + 1)×(2×0 + 1) = 1
Total number of states = 9+5+1=15 (agrees with (i)). See Fig. 1 for the individual states.
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HW3 – Fig. 1

Figure 1: Distributing 4 electrons in 6 one-electron states

(iii) According to Hund’s 1st rule, the multiplet with highest spin multiplicity should have the lowest
energy. It is 3PJ .

(iv) Since L = 1 and S = 1 for the multiplet 3PJ , thus J = 2, 1, 0.
Using E(L, S, J) = (λso/2)[J(J + 1)−L(L+ 1)−S(S + 1)], the energies of the states with different
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J values are:
E(1, 1, 2) = λso
E(1, 1, 1) = −λso
E(1, 1, 0) = −2λso .
According to Hund’s 3rd rule for more than half-filled shell, the multiplet with the highest J = L+S
value has the lowest energy. This means that E(1, 1, 2) should be lowest. This happens because for
more than half-filled shell, the spin-orbit coupling constant λso < 0.

(v) You can calculate the splitting!

3.2. Using Hund’s three rules, work out the lowest energy multiplets of d1, d3, d4, d7 and f1, f3, f7.
Compare your results given in Table 1 and 2 of the Chapter on Diamagnetism and Paramagnetism in
Kittel (Ch. 14 in 7th edition, Ch. 11 in 8th edition). Next, calculate the Landé g-factors associated with
these lowest-energy multiplets. (Once you know how to do it for a few cases, it should be straight-forward
to do the rest.)

Solution: dn

n=1: 2D3/2

n=3: 4F3/2

n=4: 5D0

n=7: 4F9/2

fn

n=1: 2F5/2

n=3: 4L = 69/2
n=7: 8S7/2 .

Practice how to calculate the Landé g-factor and effective moment for these multiplets.

3.3. The wave function of the hydrogen atom in its 1s ground state is ψ = (πa3B)−1/2exp(−r/aB), where
aB is the Bohr radius. Show that for this state < r2 >= 3a2B and calculate the diamagnetic suscepti-
bility for 1 mole of atomic hydrogen enclosed in unit volume. The correct answer is −2.32×10−6 cm3/mole.

Solution:

ψ1s =
1√
πa3B

e−r/aB

< r2 > =

∫
ψ∗1sr

2ψ1sd~r =
4π

πa3B

∫ ∞
0

e−2r/aBr2r2dr =
a2B
8

∫ ∞
0

e−xx4dx =
a2B
8

4! = 3a2B ,

where we have used the substitution x = 2r/aB.

The diamagnetic susceptibility for Avogadros number of atoms is given by

χdia = −NA
e2

6mc2
< r2 >= −NA

e23a2B
6mc2

= −NA
e2/2aB
mc2

a3B .

Now use

e2

2aB
= 13.6 eV ; mc2 = 0.522 MeV ; aB = 0.529×10−10 m ; NA = 6.022×1023 mole−1

to get χdia = −2.32×10−6 cm3/mole.
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3.4. Consider the multiplet (L, S, J). Show that the average magnetization < M > for N atoms the
presence of an external uniform magnetic field B along the z direction is given by

< M >= NµBgJJBJ(x) ,

where
x = gJµBJB/kBT

and

BJ(x) =
2J + 1

2J
coth

(
(2J + 1)x

2J

)
− 1

2J
coth

(
x

2J

)
is the Brillouin function.

Solution:

For a general state JmJ the energy in the presence of a magnetic field and the magnetic moment are
given by

E(J,mJ) = µBgJmJB ; µ(J,mJ) = −µBgJmJ .

Therefore, at a temperature T , the average magnetic moment of one atom can be obtained by using
Boltzmann distribution, as

< M >=
−
∑mJ=+J
mJ=−J µBgJmJe

−µBgJmJB/kBT∑mJ=+J
mJ=−J e

−µBgJmJB/kBT
.

Put µBgJB/kBT = y. Then, the average magnetization is given by

< M >= µBgJ
−
∑mJ=+J
mJ=−J mJe

−ymJ∑mJ=+J
mJ=−J e

−ymJ
= µBgJ

d

dy
ln

mJ=+J∑
mJ=−J

e−ymJ = µBgJ
d

dy
lnS .

Here,

S =
mJ=+J∑
mJ=−J

e−ymJ =
eJy

(
1 − e−(2J+1)y

)
(1 − e−y)

=

[
e(J+

1
2
)y − e−(J+

1
2
)y
]

[ey/2 − e−y/2]
.

Then,
d

dy
lnS =

2J + 1

2
coth(2J + 1)

y

2
− 1

2
coth

y

2
.

Substituting for y we get for N atomic magnets

< M >= NµBgJJ

[
(2J + 1)

2J
coth

(2J + 1)µBgJB

2kBT
− 1

2J
coth

µBgJB

2kBT

]
.

Kittel, in his book, defines the quantity µ ≡ µBgJ . We next define a dimensionless quantity x by

x =
µBgJJB

kBT
=
µJB

kBT
.

We then get the average magnetic moment

< M >= NµBgJJBJ(x) ,

where

BJ(x) =
2J + 1

2J
coth

(
(2J + 1)x

2J

)
− 1

2J
coth

(
x

2J

)
is the Brillouin function.
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