
PHY801: Survey of Atomic and Condensed Matter Physics
Michigan State University

Homework 4 – Solution

4.1. Consider an atom with the 3S1 ground state. What is the value of the Landé g-factor? Find the
magnetization M as a function of magnetic field B (oriented along the z axis), the temperature T , and
the concentration n = N/V . Show that in the limit of very high temperatures, where µBB << kBT , the
susceptibility is given by χ = 8nµ2B/(3kBT ).

Solution:

For the triplet 3S1 we have L = 0, S = 1, J = 1. Then,

gJ = g1 = 1 +
1×2 + 1×2− 0×1

2×1×2
= 2

and

< M >=

(
N

V

)
2×1µBB1(x) ; x =

2µBB

kBT

with

B1(x) =
3

2
coth

(
3x

2

)
− 1

2
coth

(
x

2

)
.

For x << 1 we obtain

B1(x) =
3

2

[
2

3x
+

3x

6

]
− 1

2

[
2

x
+
x

6

]
=

2

3
x ;

< M > =

(
N

V

)
2µB

2

3

2µBB

kBT
= n

8

3

µB
2

kBT
B ;

χ = n
8

3

µB
2

kBT
.

4.2. An exotic proposal to get nuclear fusion between two deuterons is to use the idea of muon catalysis.
One constructs a “Hydrogen molecule ion”, only with deuterons instead of protons and a muon in place
of an electron. Use your knowledge of the H+

2 ion to predict the equilibrium separation between the
deuterons in the muonic molecule. Explain why the chance of getting fusion is better for muons than for
electrons.

Solution:

The electron in the H+
2 ion is described by the Hamiltonian

− h̄2

2me
∇2
r −

e2

|~r − ~R/2|
− e2

|~r + ~R/2|
≡ He .

The deuteron molecule with electrons replaced by muons is described by the Hamiltonian

− h̄2

2mµ
∇2
r −

e2

|~r − ~R/2|
− e2

|~r + ~R/2|
≡ Hµ .
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Now represent the results for the H+
2 ion in Hartree units of energy and Bohr units of length. Use

experimental results for the inter-nuclear distance Rmin = 1.06 Å= 2.04aB and the binding energy
EB = 2.79 eV= 0.103 Hartree.

For the muonic problem we have to find the new length and energy scales. Define

a∗B =
h̄2

mµe2
=
me

mµ
aB ; Hartree∗ =

e2

a∗B
=
mµ

me
Hartree .

Then, Rmin and EB of the muonic molecular ion are given by

Rmin = 2.04a∗B =
me

mµ
2.04aB ; EB = 0.103 Hartree∗ =

mµ

me
0.103 Hartree .

Taking mµ = 207me we obtain Rmin = 0.00521 Å and binding energy EB = 579.9 eV. The nuclei are
much closer in muonic than in electronic H+

2 , thus making fusion much more probable.

4.3. The Schrödinger equation for one electron in an attractive one-dimensional delta-function potential
of the form V (x) = −e2δ(x) is

− h̄2

2m

d2ψ(x)

dx2
− e2δ(x)ψ(x) = Eψ(x) .

In atomic units (h̄ = m = e2 = 1), the normalized ground state wave function is ψ1(x) = e−|x|, and the
corresponding energy is E1 = −1/2.

(i) Check that the above wave function and energy are correct.

(ii) Consider a one-dimensional H2 molecule with a δ−like both ion-electron (as above) and repulsive
electron-electron interaction. The ions are fixed at a distance R. Neglect ion-ion repulsion.

(a) Write down the Schrödinger equation for this one-dimensional H2 molecule.

(b) Construct a gerade molecular orbital (MO) for this molecule with the correct normalization
coefficient.

(c) Calculate the ground state energy for the molecule using this MO.

(d) Construct a Heitler-London (HL) wave function for the molecule and calculate the energy.

(e) Compare the energies obtained using the two approaches and discuss the physics.

Use: ∫ +∞

−∞
e−|x−R/2|e−|x+R/2|dx = (1 +R)e−R∫ +∞

−∞
e−3|x−R/2|e−|x+R/2|dx = (3e−R − e−3R)/4

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4

Solution:

Part (i)
Insert the wave function to check it is an eigenstate of the Schrödinger equation with the postulated
energy.
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Part (ii)

(a) The Schrödinger equation of the H2 molecule in 1-dimensional space is given by

Hψ(x1, x2) = Eψ(x1, x2)

with

H =

[
−1

2

d2

dx21
− 1

2

d2

dx22
− δ(x1 −R/2)− δ(x1 +R/2)− δ(x2 −R/2)− δ(x2 +R/2) + δ(x1 − x2)

]
.

The first two terms are the kinetic energies, the next four terms are the attractive energies between the
two electrons and two nuclei, and the last term is the repulsive energy of two electrons (a short-range
δ−function model). If the nuclear repulsion is also short range, i.e. δ(R), then we can drop it for R 6=0.

(b) The gerade molecular orbital (MO) is given by

ψg(x) =
1√

2(1 + S)
[a(x) + b(x)]

with

a(x) = e−|x+R/2| ,

b(x) = e−|x−R/2| ,

S =

∫ +∞

−∞
a(x)b(x)dx =

∫ +∞

−∞
e−|x+R/2|e−|x−R/2|dx = (1 +R)e−R .

To get the values of S and in fact all integrals involving the functions a(x) and b(x) we should use

e−|x+R/2| = e+(x+R/2) for x ≤ −R/2 and e−|x+R/2| = e−(x+R/2) for x ≥ −R/2
e−|x−R/2| = e+(x−R/2) for x ≤ +R/2 and e−|x−R/2| = e−(x−R/2) for x ≥ +R/2 .

(c) The ground state energy in molecular orbital theory is given by

< H >≡ E0 =

∫ +∞

−∞

∫ +∞

−∞
dx1dx2ψg(x1)ψg(x2)Hψg(x1)ψg(x2) .

Before evaluating this integral it is convenient to write H in a different way, separating the parts from
different nuclei, as

H = T1 + Va1 + Vb1 + T2 + Vb2 + Va2 + V12

= Ha1 + Vb1 +Hb2 + Va2 + V12

H = H1 +H2 + V12 .

Then,
E0 =< H1 > + < H2 > + < V12 > .

Because of symmetry between electron 1 and 2, we have < H1 >=< H2 >. So, only < H1 > needs to be
evaluated.

< H1 > =
1

2(1 + S)

∫ +∞

−∞
[a(x1) + b(x1)](Ha + Vb1)[a(x1) + b(x1)]dx1

=
1

2(1 + S)
[< a|H1|a > + < a|H1|b > + < b|H1|a > + < b|H1|b >] .
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We then evaluate

< a|H1|a > =

∫ +∞

−∞
a(x1)(Ha1 + Vb1)a(x1)dx1 = −1

2
+

∫ +∞

−∞
a(x1)(Vb1)a(x1)dx1

= −1

2
−
∫ +∞

−∞
e−2|x1+R/2|δ(x1 −R/2)dx1 = −1

2
− e−2R .

Similarly,

< b|H1|b > =

∫ +∞

−∞
b(x1)(Ha1 + Vb1)b(x1)dx1 =

∫ +∞

−∞
b(x1)(T1 + Va1 + Vb1)b(x1)dx1

=

∫ +∞

−∞
b(x1)(T1 + Vb1 + Va1)b(x1)dx1 = −1

2
+

∫ +∞

−∞
b(x1)(Va1)b(x1)dx1 = −1

2
− e−2R .

The overlap terms in the energy are

< b|H1|a > =

∫ +∞

−∞
dx1b(x1)(Ha1 + Vb1)a(x1) = −1

2

∫ +∞

−∞
dx1b(x1)a(x1) +

∫ +∞

−∞
dx1b(x1)(Vb1)a(x1)

= −S
2
−
∫ +∞

−∞
dx1e

−|x1−R/2|δ(x1 −R/2)e−|x1+R/2| = −S
2
− e−R =< a|H1|b > .

Combining all four terms we get

< H1 >= − 1

2(1 + S)

[
1 + S + 2e−R + 2e−2R

]
=< H2 > .

Finally, the only remaining term is the electron-electron repulsion term

< V12 > =
1

4(1 + S)2

∫ ∫
dx1dx2 (a(x1) + b(x1)) (a(x2) + b(x2)) [δ(x1 − x2)] (a(x1) + b(x1)) (a(x2) + b(x2))

=
1

4(1 + S)2

∫
dx1 [a(x1) + b(x1)]

4 =
1

4(1 + S)2

∫
dx1

[
a4 + 4a3b+ 6a2b2 + 4ab3 + b4

]
.

We then get, similar to the calculation of normalization,∫ +∞

−∞
a4(x)dx =

∫ +∞

−∞
b4(x)dx =

1

2
.

Then, similar to the calculation of S, we get∫ +∞

−∞
a2(x)b2(x)dx =

(1 + 2R)e−2R

2
,∫ +∞

−∞
a3(x)b(x)dx =

∫ +∞

−∞
a(x)b3(x)dx =

3e−R − e−3R

4
.

Finally,

< V12 >=
1

4(1 + S)2

[
1 + 6e−R + 3(1 + 2R)e−2R − 2e−3R

]
.

Putting all the terms together we get the FAMOUS ground state energy in the MO approximation, which
is also referred to as the Hund-Mullikan (HM) approximation, as

EHMg = −1− 2(e−R + e−2R)

1 + S
+

1

4(1 + S)2

[
1 + 6e−R + 3(1 + 2R)e−2R − 2e−3R

]
.

(d) In contrast, if we use the Heitler-London approximation,

ψHL(x1, x2) = N [a(x1)b(x2) + b(x1)a(x2)]
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we get

EHLg = −1− 2(e−2R + Se−R)

1 + S2
+

(1 + 2R)e−2R

1 + S2
.

(e) HM is always higher than HL. When R → ∞, < V12 >
HL →0, whereas < V12 >

HM → + 1
4 . Still

some electron-electron repulsive energy is present in the Hund-Mullikan model. In the R→∞ limit, the
energy does not approach the sum of two hydrogen atoms, which should be equal to −1 Hartree.
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