PHY801: Survey of Atomic and Condensed Matter Physics Michigan State University

Homework 7 - Solution

7.1. Use the following equation for the drift velocity of an electron in a constant electric field oscillating with angular frequency ω,

$$
m\left(\frac{d v}{d t}+\frac{v}{\tau}\right)=-e E(t)
$$

to show that the frequency-dependent conductivity (ac conductivity) is given by

$$
\sigma(\omega)=\sigma(0) \frac{1+i \omega \tau}{1+(\omega \tau)^{2}},
$$

where $\sigma(0)=\frac{n e^{2} \tau}{m}$ and n is the density of electrons.

Solution:

$$
\begin{aligned}
E(t) & =E(\omega) e^{-i \omega t} \\
v(t) & =v(\omega) e^{-i \omega t} \\
j(t) & =j(\omega) e^{-i \omega t}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
j(\omega) & =-\operatorname{nev}(\omega)=\sigma(\omega) E(\omega) \\
\sigma(\omega) & =\sigma(0) \frac{1+i \omega \tau}{1+(\omega \tau)^{2}}
\end{aligned}
$$

7.2. (a) Consider a square lattice with lattice constant a. Draw the 1 st BZ and give the coordinates of it's symmetry points (use 4 -fold rotation about the z-axis here). Now consider the states of an electron, whose \vec{k} vector corresponds to one of the corner points of the BZ. How many plane waves have the same kinetic energy as the one corresponding to this \vec{k} ? What are their \vec{k} vectors? (We will call these as degenerate set of plane waves, because in the absence of a crystal potential these plane waves have the same kinetic energy.)
(b) Construct two stationary wave functions $\psi_{1}(x, y)$ and $\psi_{2}(x, y)$ from the above degenerate set such that for one $\left[\psi_{1}(x, y)\right]$ the probability of finding the electron at the lattice sites is maximum and for the other $\left[\psi_{2}(x, y)\right]$ it is minimum.

Solution:

(a) The 1 st BZ is a square. The symmetry points are

$$
\vec{k}=\left(k_{x}, k_{y}\right)=(0,0) ;\left(\pm \frac{\pi}{a}, 0\right) ;\left(0, \pm \frac{\pi}{a}\right) ;\left(\pm \frac{\pi}{a}, \pm \frac{\pi}{a}\right)
$$

There are 4 plane waves $e^{i \vec{k} \cdot \vec{r}}$ with

$$
\vec{k}=\left(+\frac{\pi}{a},+\frac{\pi}{a}\right) ;\left(-\frac{\pi}{a},-\frac{\pi}{a}\right) ;\left(+\frac{\pi}{a},-\frac{\pi}{a}\right) ;\left(-\frac{\pi}{a},+\frac{\pi}{a}\right) .
$$

All these 4 plane waves have the same kinetic energy

$$
E=\frac{\hbar^{2}}{2 m}\left[\left(\frac{\pi}{a}\right)^{2}+\left(\frac{\pi}{a}\right)^{2}\right]=\frac{\hbar^{2}}{m}\left(\frac{\pi}{a}\right)^{2}
$$

(b) Let us denote the 4 degenerate plane waves as

$$
\phi_{1}(x, y)=e^{+i\left(\frac{\pi}{a} x+\frac{\pi}{a} y\right)} ; \phi_{2}(x, y)=e^{-i\left(\frac{\pi}{a} x+\frac{\pi}{a} y\right)} ; \phi_{3}(x, y)=e^{+i\left(\frac{\pi}{a} x-\frac{\pi}{a} y\right)} ; \phi_{4}(x, y)=e^{-i\left(\frac{\pi}{a} x-\frac{\pi}{a} y\right)} .
$$

Then,

$$
\begin{aligned}
& \psi_{1}(x, y)=\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}=2 \cos \left(\frac{\pi}{a} x+\frac{\pi}{a} y\right)+2 \cos \left(\frac{\pi}{a} x-\frac{\pi}{a} y\right)=4 \cos \left(\frac{\pi}{a} x\right) \cos \left(\frac{\pi}{a} y\right) \\
& \psi_{2}(x, y)=\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4}=2 \cos \left(\frac{\pi}{a} x+\frac{\pi}{a} y\right)-2 \cos \left(\frac{\pi}{a} x-\frac{\pi}{a} y\right)=4 \sin \left(\frac{\pi}{a} x\right) \sin \left(\frac{\pi}{a} y\right)
\end{aligned}
$$

Of these states, the probability of finding the electron at a lattice site is largest for ψ_{1}. The probability of finding an electron at a lattice site is zero for ψ_{2}.

However, there are two other states, $\psi_{3}(x, y)=4 \cos \left(\frac{\pi}{a} x\right) \sin \left(\frac{\pi}{a} y\right)$ and $\psi_{4}(x, y)=4 \sin \left(\frac{\pi}{a} x\right) \cos \left(\frac{\pi}{a} y\right)$, which also give zero probability to find an electron at the lattice sites. The probability maxima for ψ_{3} and ψ_{4} are at different points of the unit cell.
7.3. Now consider the case when there is a periodic potential in this square lattice, given by

$$
U(x, y)=-U_{0}\left[\cos \left(\frac{2 \pi}{a} x\right)+\cos \left(\frac{2 \pi}{a} y\right)\right]
$$

What is the energy gap between the two states $\psi_{1}(x, y)$ and $\psi_{2}(x, y)$, defined in Problem 7.2.? Explain your result physically by matching the probability distribution of the electron in these two states and the attractive regions of the potential.

Solution:

$$
\begin{aligned}
E_{1} & =\frac{<\psi_{1}|U| \psi_{1}>}{<\psi_{1} \mid \psi_{1}>}=\frac{\int_{0}^{a} d x \int_{0}^{a} d y\left|\psi_{1}(x, y)\right|^{2} U(x, y)}{\int_{0}^{a} d x \int_{0}^{a} d y\left|\psi_{1}(x, y)\right|^{2}}=-U_{0} \\
E_{2} & =\frac{<\psi_{2}|U| \psi_{2}>}{<\psi_{2} \mid \psi_{2}>}=\frac{\int_{0}^{a} d x \int_{0}^{a} d y\left|\psi_{2}(x, y)\right|^{2} U(x, y)}{\int_{0}^{a} d x \int_{0}^{a} d y\left|\psi_{2}(x, y)\right|^{2}}=+U_{0}
\end{aligned}
$$

The energy gap between these two states is $2 U_{0}$. To find the actual gap, however, you have to calculate also the energies of the other two states ψ_{3} and ψ_{4} that have been discussed in Problem 7.2.

