PHY801: Survey of Atomic and Condensed Matter Physics Michigan State University

Homework 9 - Solution

9.1. This problem on the cohesive energy of bcc and fcc neon compares the subtle difference between different types of crystal structures for Lennard-Jones solids and is based on Kittel Chapter 3, Problem \#2. Using the Lennard-Jones potential, calculate the ratio of the cohesive energies of neon in the bcc and fcc structures. The lattice sums are

$$
C_{12}(b c c)=\sum_{j}^{\prime} p_{j}^{-12}=9.11418 ; \quad C_{6}(b c c)=\sum_{j}^{\prime} p_{j}^{-6}=12.2533
$$

for the bcc lattice and

$$
C_{12}(f c c)=\sum_{j}^{\prime} p_{j}^{-12}=12.13188 ; \quad C_{6}(f c c)=\sum_{j}^{\prime} p_{j}^{-6}=14.45392
$$

for the fcc lattice.

Solution:

At the equilibrium interatomic separation,

$$
E_{c o h}=\epsilon\left(\frac{C_{6}^{2}}{2 C_{12}}\right) .
$$

With the values for C_{12} and C_{6} provided, we get $E_{c o h}(f c c)=\epsilon \times 8.6100$ and $E_{c o h}(b c c)=\epsilon \times 8.2368$. Thus,

$$
\frac{E_{c o h}(b c c)}{E_{c o h}(f c c)}=\frac{8.2368}{8.6100}=0.957 .
$$

9.2. This problem on solid molecular hydrogen is based on Kittel Chapter 3, Problem \#3. For H_{2} one finds from measurements on the gas that the Lennard-Jones parameters are $\epsilon=50 \times 10^{-16} \mathrm{erg}$ and $\sigma=2.96 \AA$. Find the cohesive energy in kJ per mole of H_{2}; do the calculation for an fcc structure. Treat each H_{2} molecule as a sphere. The observed value of the cohesive energy is $0.751 \mathrm{~kJ} / \mathrm{mol}$, much less than what you get, so that quantum corrections must be very important.

Solution:

$$
\begin{aligned}
& \frac{E_{c o h}}{\mathrm{~mol}}=4 \epsilon \times 2.1525 \times N_{A}=4 \times 50 \times 10^{-16} \operatorname{erg} \times \frac{10^{-7} \mathrm{~J}}{\operatorname{erg}} \times 6.022 \times 10^{23}, \\
& E_{c o h}=2.59 \mathrm{~kJ} / \mathrm{mol} .
\end{aligned}
$$

This value decreases significantly by quantum corrections, so it is reasonable to find the same melting point for H_{2} and the much heavier rare gas Ne .
9.3. This problem involving the Madelung energy and repulsive energy for a linear ionic crystal is based on Kittel Chapter 3, Problem \#5. Consider a line of $2 N$ ions of alternating charge $\pm q$ with a repulsive potential energy A / R^{n} between nearest neighbors.
(a) Show that, in cgs units, at the equilibrium separation

$$
U\left(R_{0}\right)=-\frac{2 N q^{2} \ln 2}{R_{0}}\left(1-\frac{1}{n}\right) .
$$

(b) Let the crystal be compressed so that $R_{0} \rightarrow R_{0}(1+\delta)$. Show that the work done in compressing a unit length of the crystal has the leading term $\frac{1}{2} C \delta^{2}$, where, in cgs units,

$$
C=\frac{(n-1) q^{2} \ln 2}{R_{0}} .
$$

To obtain the results in SI, replace q^{2} by $q^{2} / 4 \pi \epsilon_{0}$. Note: Do not expect to obtain this result from the expression for $U\left(R_{0}\right)$; you must use the complete expression for $U(R)$.

Solution:

$$
\begin{aligned}
U & =N\left[\frac{Z A}{R^{n}}-\frac{\alpha q^{2}}{R}\right] \text { with } \alpha=2 \ln 2 \text { and } Z=2 \\
\frac{d U}{d R} & =0 \\
R_{0}^{n-1} & =\frac{Z n A}{\alpha q^{2}} \\
U\left(R_{0}\right) & =\frac{N}{R_{0}}\left[\frac{Z A}{R_{0}^{n-1}}-\alpha q^{2}\right] \\
U\left(R_{0}\right) & =-\frac{2 N \ln 2 q^{2}}{R_{0}}\left[1-\frac{1}{n}\right] .
\end{aligned}
$$

Now we can expand $U(R)$ near $R=R_{0}$. The linear terms vanish since the first derivative of $U(R)$ vanishes at R_{0}. The quadratic terms is the first correction.

$$
\begin{aligned}
U(R) & =U\left(R_{0}(1+\delta)\right)=N\left[\frac{Z A}{R_{0}^{n}(1+\delta)^{n}}-\frac{\alpha q^{2}}{R_{0}(1+\delta)}\right] \\
U(R) & =U\left(R_{0}(1+\delta)\right)=U\left(R_{0}\right)+\frac{1}{2} N \delta^{2} \frac{(n-1) q^{2} 2 \ln 2}{R_{0}} \\
\frac{U(R)}{2 N} & =\frac{U\left(R_{0}\right)}{2 N}+\frac{1}{2} C \delta^{2} \text { with } C=\frac{(n-1) q^{2} \ln 2}{R_{0}}
\end{aligned}
$$

9.4. This problem about ionic crystals and their most stable ionic configuration is based on Kittel Chapter 3, Problem \#7. Barium oxide has the NaCl structure. Estimate the cohesive energies per molecule of the hypothetical crystals $\mathrm{Ba}^{+} \mathrm{O}^{-}$and $\mathrm{Ba}^{++} \mathrm{O}^{--}$with respect to separated neutral atoms. The observed nearest-neighbor internuclear distance is $R_{0}=2.76 \AA$. The first and second ionization potentials of Ba are 5.19 eV and 9.96 eV , respectively. The electron affinities of the first and second electrons added to the neutral oxygen atom are 1.5 eV and -9.0 eV , respectively. The first electron affinity of the neutral oxygen atom is the energy released in the reaction $\mathrm{O}+e \rightarrow \mathrm{O}^{-}$. The second electron affinity is the energy released in the reaction $\mathrm{O}^{-}+e \rightarrow \mathrm{O}^{--}$. Which valence state do you predict will occur? Assume R_{0} is the same for both forms, and neglect the repulsive energy.

Solution:

We have to first calculate the cohesive energy when the charges are $\pm 1 e$ and $\pm 2 e$. Here we will calculate the energy per dimer, U / N, because we will correct for the ionization energy and electron affinity for a dimer.

We may ignore the short-range repulsion, which gives about a 10% correction, and focus on the main Madelung energy. We will express the charge as $|q|=e \epsilon$, where $\epsilon=1,2$. Then, for an fcc lattice,

$$
\begin{align*}
\frac{U}{N}=-\frac{\alpha q^{2}}{R_{0}} & =-\frac{1.747565}{2.76}\left(\frac{e^{2}}{1 \AA}\right) \epsilon^{2} \text { with } \epsilon=1,2 \\
\frac{U}{N} & =-9.11 \mathrm{eV} \text { for } \epsilon=1 \tag{1}\\
\frac{U}{N} & =-36.44 \mathrm{eV} \text { for } \epsilon=2 \tag{2}
\end{align*}
$$

Clearly the $+2 /-2$ charge state is more stable than the $+1 /-1$ charge state due to the larger attraction of the larger charges. But we should not forget the energies to produce a particular ionization state from isolated neutral Ba and O atoms. Consequently, we need to combine the above results with the energy investments associated with ionizing the isolated atoms.

For the charge state $+1 /-1$ we get

$$
\begin{align*}
B a+5.19 \mathrm{eV} & \rightarrow B a^{+}+e \\
O+e & \rightarrow O^{-}+1.5 \mathrm{eV} \\
B a+O & \rightarrow B a^{+}+O^{-}+(1.5-5.19) \mathrm{eV} \tag{3}
\end{align*}
$$

Combining the results of Eq. (1) and Eq. (3) we get for the cohesive energy of a $\mathrm{Ba}^{+} \mathrm{O}^{-}$fcc lattice

$$
E_{c o h}\left(\mathrm{Ba}^{+} \mathrm{O}^{-}\right)=9.11 \mathrm{eV}-3.69 \mathrm{eV}=5.42 \mathrm{eV}
$$

Now consider the charge state $+2 /-2$. We get

$$
\begin{align*}
B a+(5.19+9.96) \mathrm{eV} & \rightarrow B a^{++}+2 e \\
O+2 e & \rightarrow O^{--}+(1.5-9.0) \mathrm{eV} \\
B a+O & \rightarrow B a^{++}+O^{--}-22.65 \mathrm{eV} . \tag{4}
\end{align*}
$$

Combining the results of Eq. (2) and Eq. (4) we get for the cohesive energy of a $\mathrm{Ba}^{++} \mathrm{O}^{--}$fcc lattice

$$
E_{c o h}\left(\mathrm{Ba}^{++} \mathrm{O}^{--}\right)=36.44 \mathrm{eV}-22.65 \mathrm{eV}=13.79 \mathrm{eV}
$$

The cohesive energy of $\mathrm{Ba}^{++} \mathrm{O}^{--}$is obviously larger than that of $\mathrm{Ba}^{+} \mathrm{O}^{-}$. So the more stable compound is $\mathrm{Ba}^{++} \mathrm{O}^{--}$.

