PHY801: Survey of Atomic and Condensed Matter Physics

Michigan State University, Spring Semester 2020

Practice Exam 1 - Solution

Student Name:

Useful Formulas:

- Magnetization M of a multiplet with a given total angular momentum J and Landé g-factor g_{J} is given by

$$
\begin{aligned}
M & =N g_{J} \mu_{B} J B_{J}(x), \text { where } \\
x & =\frac{g_{J} \mu_{B} J B}{k_{B} T} \text { and } \\
\mu_{B} & =\frac{e \hbar}{2 m}=5.8 \times 10^{-5} \mathrm{eV} / \mathrm{T} \text { is the Bohr magneton. }
\end{aligned}
$$

The Brillouin function is given by

$$
B_{J}(x)=\frac{2 J+1}{2 J} \operatorname{coth}\left(\frac{(2 J+1) x}{2 J}\right)-\frac{1}{2 J} \operatorname{coth}\left(\frac{x}{2 J}\right) .
$$

It may be approximated by

$$
B_{J}(x) \approx \frac{J+1}{3 J} x \text { for } x \ll 1
$$

- Hydrogen atom ($\mathrm{Z}=1$):

$$
\begin{aligned}
R & =\frac{m e^{4}}{2 \hbar^{2}}=13.6 \mathrm{eV} \quad \text { Rydberg constant } \\
a_{B} & =\frac{\hbar^{2}}{m e^{2}}=0.529 \AA \quad \text { Bohr radius }
\end{aligned}
$$

1. (5 points) X-ray laser pulses can be used to strip atoms of electrons one by one (ionize the atom).
(a) What is the energy required to remove the last electron from a K atom? The neutral K atom has 19 electrons. The ionization energy of the hydrogen atom is 13.6 eV .
(b) What is the size of the Bohr radius for this last electron?

Solution:
(a) The last electron sees $Z=19$. The ionization energy E_{I} is proportional to Z^{2}. E_{I} for the hydrogenic atom with $Z=19$ is $E_{I}=13.6 \mathrm{eV} \times 19^{2}=4909.6 \mathrm{eV}$.
(b) The Bohr radius a_{B} shrinks and scales as $1 / Z$. The new Bohr radius is $a_{B}=0.529 \AA / 19=0.0274 \AA$.
2. (5 points) Consider an electron trapped in a 3-dimensional harmonic oscillator potential. The Hamiltonian in atomic units ($\hbar=m=e^{2}=1$) is given by

$$
H=-\frac{1}{2} \nabla^{2}+\frac{1}{2} r^{2} .
$$

Let's use a trial wave function for the ground state of the form

$$
\psi(\vec{r})=\frac{1}{\sqrt{\pi \alpha^{3}}} e^{-r / \alpha}
$$

This gives (do not derive this)

$$
\frac{\langle\psi| H|\psi\rangle}{\langle\psi \mid \psi\rangle}=\frac{1}{2 \alpha^{2}}+\frac{3}{2} \alpha^{2} .
$$

What is the best variational ground state energy one can get (in Hartree units)?

Solution:

$$
E(\alpha)=\frac{1}{2 \alpha^{2}}+\frac{3}{2} \alpha^{2} .
$$

Minimize $E(\alpha)$ with respect to the variational parameter α :

$$
\frac{d E(\alpha)}{d \alpha}=-\frac{2}{2} \alpha^{-3}+\frac{3}{2} 2 \alpha=0 .
$$

This gives the best variational parameter $\alpha^{2}=1 / \sqrt{3}$ (make sure this is a minimum, not a maximum).
Substituting this value of α^{2} in the energy expression we find

$$
E_{\text {min }}=E\left(\alpha^{2}=1 / \sqrt{3}\right)=\sqrt{3} \text { Hartree . }
$$

3. (10 points) The ground state electronic configuration of the nitrogen atom is $1 s^{2} 2 s^{2} 2 p^{3}$. Treat the $1 s$ and $2 s$ electrons as core electrons and the $2 p$ electrons as valence electrons.
(a) What is the total spin angular momentum and total orbital angular momentum of the core? Do these core electrons contribute to the magnetic susceptibility χ of the atoms? If so, what is the sign of χ ?
(b) According to Hund's rules, what is the lowest energy multiplet and what is its degeneracy?
(c) What is the expression for zero-field magnetic susceptibility of 1 mole of nitrogen atoms at high temperatures T ?

Solution:

(a) $S=0, L=0, J=0$: No paramagnetism. There is a negative (usually) small diamagnetic contribution to the magnetic susceptibility (Langevin diamagnetism).
(b) $S=3 / 2, L=0, J=3 / 2:{ }^{4} S_{3 / 2}$

Degeneracy of this lowest energy multiplet is $2 J+1=4$.
(c) $x=\frac{g_{J} \mu_{B} J B}{k_{B} T} \ll 1$ at high temperatures, leading to Curie law

$$
\chi=\frac{M}{B}=N_{A} \frac{\left(g_{J} \mu_{B}\right)^{2} J(J+1)}{3 k_{B} T} .
$$

We have $S=3 / 2, L=0, J=3 / 2$, thus

$$
g_{J}=1+\frac{J(J+1)-L(L+1)+S(S+1)}{2 J(J+1)}=1+1=2 .
$$

Then,

$$
\chi=N_{A} \frac{5 \mu_{B}^{2}}{k_{B} T} .
$$

4. (5 points) A He atom is excited to the $1 s^{1} 2 p^{1}$ configuration. The one-electron spatial wave functions are $\phi_{1 s}(\vec{r})$ and $\phi_{2 p_{m}}(\vec{r})$.
(a) What is the total number of 2 -electron states corresponding to this configuration?
(b) Write down the 2-electron spin triplet excited state wave functions associated with this configuration.

Solution:

(a) Since 1 electron has to be in the $1 s$ state with spin either up or down (2 possible ways) and the other in one of the $62 p$ states (three space orbitals with spin either up or down -6 possible ways), the total number of 2 -electron states is $2 \times 6=12$.
(b) There are 9 possible triplet excited wavefunctions,

$$
\begin{aligned}
\psi_{t_{1}} & =\frac{1}{\sqrt{2}}\left[\phi_{1 s}\left(\vec{r}_{1}\right) \phi_{2 p_{m}}\left(\vec{r}_{2}\right)-\phi_{1 s}\left(\vec{r}_{2}\right) \phi_{2 p_{m}}\left(\vec{r}_{1}\right)\right] \times\left[\alpha_{1} \alpha_{2}\right], \\
\psi_{t_{2}} & =\frac{1}{\sqrt{2}}\left[\phi_{1 s}\left(\vec{r}_{1}\right) \phi_{2 p_{m}}\left(\vec{r}_{2}\right)-\phi_{1 s}\left(\vec{r}_{2}\right) \phi_{2 p_{m}}\left(\vec{r}_{1}\right)\right] \times\left[\beta_{1} \beta_{2}\right], \\
\psi_{t_{3}} & =\frac{1}{\sqrt{2}}\left[\phi_{1 s}\left(\vec{r}_{1}\right) \phi_{2 p_{m}}\left(\vec{r}_{2}\right)-\phi_{1 s}\left(\vec{r}_{2}\right) \phi_{2 p_{m}}\left(\vec{r}_{1}\right)\right] \times\left[\frac{\alpha_{1} \beta_{2}+\beta_{1} \alpha_{2}}{\sqrt{2}}\right],
\end{aligned}
$$

each with $m=-1,0,1$.

5. (5 points)

(a) Write down the wave function for the ground state of the H_{2} molecule in the molecular orbital (MO) approximation. Express your answer in terms of the $1 s$ hydrogen atom wave functions associated with the two protons, $a(\vec{r})$ and $b(\vec{r})$.
(b) Draw qualitatively the ground state electronic energy, the repulsive energy between two protons, and the total energy as function of the inter-nuclear separation R.

Solution:

(a) In the MO approximation for the H_{2} molecule we first find single particle states (molecular orbitals). In the simplest case the molecular orbital is formed out of two atomic hydrogen $1 s$ states associated with two nuclei, denoted as $a(\vec{r})$ and $b(\vec{r})$. Since the bonding combination has lower energy we use these bonding orbitals to construct the states for the two electrons.

$$
\phi_{g}(\vec{r})=N[a(\vec{r})+b(\vec{r})] .
$$

If we now put two electrons in this orbital, their spins are opposite. We get the spin singlet

$$
\psi_{M O}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\phi_{g}\left(\vec{r}_{1}\right) \phi_{g}\left(\vec{r}_{2}\right)\left[\frac{\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}}{\sqrt{2}}\right]
$$

This is just like the ground state of the He atom. Instead of putting the two electrons in the $1 s$ orbital $\phi_{1 s}(\vec{r})$, we put them into the bonding orbital $\phi_{g}(\vec{r})$.
(b)

