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Calculation of Magic Numbers and the Stability of Small Si Clusters
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We present calculations of the equilibrium structures and cohesive energies for Si clusters up to
the size n=14. No open structures and no diamond-lattice fragments are found. Especially stable
structures found for n = 6 and 10 coincide with experimentally observed magic numbers.

PACS numbers: 36.40.+d, 31.20.Tz, 31.90.+s

Presently, there is much interest in small semicon-
ductor (Si, Ge, C) clusters, which show strong and
reproducible structure in both their nucleation and
photofragmentation mass spectra.’

In these materials, cluster sizes which occur in abun-
dant number (‘‘magic numbers’’) are smaller than
previously observed in van der Waals? (Xe,. . .) and
metallic>* (Na, Pb,...) clusters. In the van der
Waals case, abundant occurrence of 13-, 55-, etc.,
atom clusters has been explained by stable icosahedral
packing,? and in the metallic case (e.g., Na) the shell
structure of jellium droplets seems to explain the data*
without pronounced structural dependence. On the
other hand, the different (directional) type of bonding
in semiconductors is expected to prefer other atomic
arrangements whose stability shows a significantly dif-
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The first term is the one-electron energy, where the
molecular levels €, have been obtained from a four-
state  TB Hamiltonian with parametrized nearest-
neighbor matrix elements as given by Chadi.> The
second term is the corresponding reference energy of
isolated neutral atoms (8 denotes atomic levels). The
sum of the first two terms defines a ‘‘band-structure”’
energy E,.. The third term is a semiempirical correc-
tion to the double counting of electron-electron in-
teractions, the exchange correlation energies, and also
the ion-ion repulsion energy. It is given by a sum of
pairwise repulsive interactions E,(d). Chadi originally
parametrized E,(d) locally around the perfect-crystal
energy minimum. This is not good enough here, since
we expect a range of bond lengths and bonding config-
urations, drastically different from the perfect crystal.
We therefore define E,(d) = E\,(d) — E,4(d) and con-
struct it in a way to reproduce the total-energy curve
E . (d) of the diatomic molecule, as given by an ab ini-
tio calculation.® This, by definition, exactly reproduces
the entire diatomic binding-energy curve. The fourth
term is an attempt to correct for energy changes arising
from different numbers of bonds (n,), found in dif-
ferent geometries of the same cluster size (#). In ab-
sence of this term, the nearest-neighbor-only TB Ham-

ferent size dependence. In fact, small crystalline frag-
ments have been proposed as stable clusters. In this
Letter we present detailed calculations searching for
the equilibrium structures and cohesive properties of
Si; to Siy4 clusters. The main results are these: (i)
Rather close-packed structures can be found signifi-
cantly lower in energy than the corresponding crystal
fragments and (ii) particularly stable structures occur
for n=6 and 10 and possibly » =4 which coincide
with experimentally observed magic numbers.

The calculations are done in two steps: First, we
globally search in the 3n-dimensional space for the
equilibrium geometries of Si, using a simple empirical,
nearest-neighbor, tight-binding (TB) Hamiltonian
which is an extension of the formalism developed by
Chadi.® The total energy of a cluster (with respect to
isolated atoms) is expressed as
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i=1

—

iltonian would always favor maximum coordination
and metallic structures in contrast to experimental evi-
dence. The values ¢;=0.225 eV, ¢,=1.945 eV, and
Y3= —1.03 eV are adjusted to reproduce the absolute
cohesive energies of both diamond-structure and bcc
silicon’ and make this term vanish for Si,. With this
correction the model reproduces a wide range of atom-
ic coordination numbers (from —~1 to —8). The
correction for coordination changes, however, is only
partial and some dependence of E,, remains on the
bonding to more distant atoms or on the definition of
nearest-neighbor atoms. The last term finally treats
intra-atomic Coulomb interactions making geometric
arrangements with large charge transfer (g;— g°) less
favorable. We here use an approximate value of U=1
eV and derive the charge g; at the site i from a Mulli-
ken population analysis. We find our results rather in-
sensitive to the value of U. Finally, the difference
between neutral and charged clusters can approximate-
ly be described by accordingly restricting the sum in
the band-structure term.

The TB Hamiltonian defined above yields the ab ini-
tio results for Si, exactly, i.e., dy=2.27 A (2.24),
E.n=3.07 eV (3.0), and wy=519 cm~' (511); for
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diamond silicon it yields ag=5.47 A (5.43), E.,,= 4.6
eV (4.63), and B=0.88 a.u. (0.99) for lattice con-
stant, cohesive energy, and bulk modulus, respective-
ly. The experimental values are given in parentheses.
For the high-pressure bcc phase the model yields
a9=3.25 A (3.12), E,,,=4.2 eV (4.24) in comparison
to local-density approximation (LDA) calculations by
Yin and Cohen.” The quality of the cluster results will
be discussed in detail below.

The search for equilibrium geometries of neutral Si,
clusters is initiated by minimizing E,, given in Eq. (1)
using an analytic expression of the Hellmann-
Feynman forces by starting with a large number
(10-20) of different ‘‘seed’’ bonding configurations
for each cluster size. Few (2-3) stable configurations
result from this search. The resulting energies of the
most stable structures for different cluster sizes are
given in Fig. 1. Rather similar distributions are found
for neutral or positively or negatively charged clusters.
All tight-binding calculations were done on an AT&T
PC 6300 personal computer.

We then proceed to step 2 and in detail investigate
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FIG. 1. Cohesive energies per atom (top panel) for the
most stable arrangements of Si, clusters. Tight-binding
results (dashed line) are compared to local-density—func-
tional results (solid line). Especially stable cluster sizes
n==6 and 10 coincide with clusters found abundantly in the
experiment (see inset). The bottom panel shows the calcu-
lated LDA gaps and illustrates the strongly semiconducting
character of the magic cluster sizes.
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the several stable and metastable structures of Si, to
Sijp using a self-consistent local-density—functional
(LDA) scheme®® for E,,. The ingredients here are
the LDA functional of Ceperley and Alder, norm-
conserving pseudopotentials of the Hamann-Schluter-
Chiang type, and a Gaussian orbital basis with twenty
orbitals per Si site. This scheme applied to bulk silicon
reproduces plane-wave calculations with good accura-
cy.!0 If applied to small clusters, however, the Gauss-
ian orbital basis is expected to yield less accurate
results and the cohesive energy will be systematically
too small. This will, however, not affect the gross
features of the binding-energy curve nor the general
nature of the found stable structures. We also neglect
spin-polarization effects which introduces additional
errors on the same scale especially for small clusters.!!
It is rather satisfying to see how the original TB results
agree qualitatively with the LDA results. Quantitative
differences occur in both energies (see Fig. 1) and
bond lengths as outlined below.

We now discuss the cluster structures in some detail.
Si, was used as input for the tight-binding scheme.
The LDA calculations yield the same bond length but
a different binding energy.!?> The Si; structure is a tri-
angle with an opening angle of — 80° which agrees
with the singlet state found in independent first-
principles calculations.!! The restoring forces for
bond-angle changes are rather small. Remarkably, the
TB results for bond length, bond angle, and cohesive
energy are within less than 5%. Si, is a flat rhombus
with one diagonal about equal (2.4 A) to the side
length of 2.3 A. The TB bond lengths are 2.5 and 2.4
A, respectively. In Sis a ‘‘squashed’’ trigonal bipyra-
mid with base length of 3.1 A is favored over the
tetragonal pyramid. A metastable minimum (AE
=0.3 eV/atom) exists for a ‘‘pointed’’ bipyramid with
base length of 2.3 A. The corresponding TB results
are 3.3 A, 0.6 eV, and 2.5 /°\, respectively. The struc-
ture of Sig is a tetragonal bipyramid or distorted oc-
tahedron with a base length of 2.6 A and cap bond
lengths of ~ 2.3 A which is much more stable ( ~ 0.6
eV/atom) than the relaxed sixfold ring, a fragment
from bulk Si. The corresponding TB results are 2.8 A,
2.5 A, and 0.6 eV. Another, more distorted structure
is found for Sig at slightly higher energy. From Si; to
Sig stable structures are found by addition of atoms as
caps to the Sig distorted octahedron in such a way that
their mutual distance is maximal. This leads for Sijg to
a regular octahedron structure with four caps leaving
alternating sides empty. Another high-symmetry, but
metastable, decahedron structure exists at —0.4 eV
higher energy. The open adamantane cage structure, a
fragment of bulk Si, is far less stable ( ~ 0.9 eV/atom)
although it is topologically connected to the octahedral
equilibrium structure!® (see details below). For Sij,
through Siy4 additional caps are added to Si;y and the
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structures are allowed to relax. Some of the structures
show Jahn-Teller distortions when a symmetry reduc-
tion is needed to lift the degeneracy of the highest oc-
cupied molecular orbital. A detailed discussion of
these results will be given elsewhere.!* The calculated
equilibrium structures agree well with recent accurate
ab initio calculations!'? 13 where available.

We now analyze the results. The TB curve suggests
that Siy, Sig, and Si;y should be especially stable while
the LDA emphasizes only Sig and Sijq. It is interesting
to note that the structure in the stability curve
displayed in Fig. 1 (top) reflects the size dependence
of the ‘‘band-structure’” energy, while the other terms
in Eq. (1) seem to play only a secondary role. This
feature is well known!® and has been used to analyze
bonding trends. From the inspection of our results we
find a bonding highest occupied molecular orbital and
antibonding lowest unoccupied molecular orbital and a
large gap between these orbitals to be a favorable sta-
bility criterion. The calculated LDA gaps, shown in
Fig. 1 (bottom), clearly illustrate this point.

In contrast to some recent speculations about the
equilibrium structure®!? for Si clusters, our calcula-
tions suggest that for cluster sizes n =< 14 open bulk-
like structures are much less stable than partially
close-packed arrangements. If we consider, e.g., Sig in
its tetragonal bipyramid confl%uratlon the calculated
(LDA) bond lengths are 2.3 A for the fourfold apex
atoms and 2.6 A for the base, which is only weakly
bound. The main bonding therefore originates from
the two caps. As one decorates alternating pyramidal
faces with threefold caps and produces Sijy the bipyr-
amid becomes perfectly octahedral (O) with a bond
length of 2.55 A still yielding some weak bonding.
The main bonding now arises from the new, catenated
threefold caps ( T) with a bond length of 2.3 A. Thus,
although extra stability seems to derive from close
packing, the main bonding is contained in the surface
caps. However, adding more caps onto the free faces
of the octahedron up to »n =14 does not produce extra
stability (see Fig. 1, TB results) for the fully decorated
octahedron. This is a result of over-coordination of Si
atoms and clearly indicates that the bonding is dif-
ferent from the simple octahedral-type packing of
spheres.!®

There is a simple topological connection between the
Sijp equilibrium structure and the adamantane cage ob-
tained by moving the O atoms outwards by ~ 0.9 A
and simultaneously the T atoms inwards by ~ 0.9 A.
Upon this structural inversion level crossing occurs
and the bonding changes drastically in character and
no octahedral bonding remains. In Fig. 2 we show the
calculated LDA configurational energies along the
minimum-energy path connecting the stable octahedral
structure (O) and the metastable tetrahedral (relaxed)
adamantane cage (A4) (full curve). The energy differ-
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FIG. 2. Total-energy variation for Si,, along the

minimum-energy path connecting the stable octahedral
structure O and the metastable adamantane structure A.
Local-density—functional results (solid curve) are compared
to two tight-binding results (dashed curves), obtained for
O-type and A-type bonding. The octahedral atoms have
coordinates (X,0,0) with 27 A>X>18 A: the
tetrahedral atoms have coordinates (VY,Y,Y) with 1.1
A<Y<16A.

ence is large ( — 0.9 eV/atom) and the barrier is small
(~0.1 eV/atom), virtually ruling the relaxed adaman-
tane cage out as candidate for observable structures.
Also shown are TB results along that same path. The
two curves correspond to O-type and A-type nearest-
neighbor connectivities. Both bonding configurations
individually yield metastable minima; however, not
along the LDA energy path shown in Fig. 2. The TB
bond lengths are generally ~ 0.1 to 0.2 A larger than
the corresponding LDA values. This tendency of the
TB Hamiltonian can be traced to the Si, total-energy
curve which is too attractive at large distances (d = 2.5
A) if applied to cluster bonding. One may use the
LDA cluster results and post hoc adjust the TB Hamil-
tonian for large distances. !4

The equilibrium structures of larger clusters are
determined by the competition of bulklike atoms in
sp® configuration preferring a network structure and
the surface atoms which tend to minimize their
number of broken bonds. Using the (calculated) ener-
gies of the diamondlike and close-packed arrange-
ments from Si;o and Siy, and using surface-to-volume
ratios, we estimated the critical cluster size for the
transformation from close packed to diamond to be in
excess of ~ 10% atoms. !4

It is interesting to note that the maxima in our
total-energy curve for neutral Si, clusters coincide
with cluster sizes (positive ions) observed in abundant
numbers during both the condensation and the pho-
tofragmentation' (see inset in Fig. 1). This has to be
some surprise since (i) the role of charge states has
not been fully considered and (ii) it is not clear from
the experiment whether equilibrium conditions have
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been reached during cluster growth. Clearly, both en-
ergetic and kinetic considerations are in general neces-
sary to interpret these spectra. If we interpret the
results of photofragmentation purely on energetic
grounds, a binding-energy curve increasing smoothly
with cluster size results in single atoms being preferen-
tially ejected.!* This prevails until particularly stable
fragments can occur, i.e., until the clusters are large
enough to decay into n=6 or 10 fragments. This
theoretical result is in accord with experimental find-
ings! and thus underlines the importance of energetic
considerations.

In Ge clusters, the similar type of bonding as in Si
suggests similar stable structures. This hypothesis
finds support in the observed!’ mass spectra of Ge,
yielding the same magic numbers as Si and in calculat-
ed? equilibrium structures of Ge,-Ges. A very dif-
ferent behavior, on the other hand, is expected for C,
clusters, where 7 bonding plays a significant role.!”2!

In conclusion, we investigated structural stability
and cohesive energies for Si, clusters up to n=14.
The stable structures are found for rather close-packed
atomic arrangements. The most stable clusters are,
however, typical ‘‘semiconductors,’ i.e., with a large
band gap between bonding and antibonding states.
These clusters of size n =6 and 10 and possibly n =4
coincide with magic numbers observed in mass distri-
bution spectra.
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