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We calculate the geometrical and electronic structure of small Sin, Sin +, and Sin - clusters up to 
sites n = 14 within a combined tight-binding-density-functional-theory scheme. Especially stable 
structures for n = 6 and 10 coincide with observed abundancies in the experimental mass spectra. 
All equilibrium structures are found to be close packed, with a different bonding than found in the 
bulk fragments. A transition to bulklike open structures is estimated to occur at cluster sizes 
n "" 102_103. 

I. INTRODUCTION 

The properties of small atomic clusters have received 
much attention over the past decade. I These finite sys­
tems represent a new type of materials which show finger­
prints of properties observed in atomic or molecular phys­
ics on one hand and condensed matter physics on the oth­
er hand. Also, the large portion of surface atoms makes 
small clusters interesting for applications in catalysis. 2 

The low coordination of surface atoms causes bond con­
tractions,3 which have also been observed at extended sur­
faces of many systems. These bond contractions, which 
are large on the average and "tunable" through the clus­
ter size, make small clusters behave as matter under high 
pressure and can lead to new structures. Finally, the pro­
nounced size dependence of the electronic structure of 
small clusters is expected to lead to materials with mass­
tailored optical and electrical properties. 

So far, the largest portion of experimental effort has 
been devoted to cluster production. Clusters are pro­
duced in pulsed ultrasonic beams following a vapor con­
densation4 or laser vaporization5 and their size is usually 
determined in a mass analyzer after a charging and ac­
celeration process. In contrast to this class of clusters 
produced in vacuum or in low-pressure carrier gas, clus­
ters of quite well-defined sizes can also be grown in solu­
tion. 6,7 

In general, observed mass spectra do depend on 
cluster-preparation conditions, such as their charge state, 
temperature and cooling rate, and type and pressure of 
the carrier gas. Of special importance for the theoretical 
interpretation of the structure and bonding in small clus­
ters are pronounced features such as abundant cluster 
sizes ("magic numbers") which do not depend on the 
preparation technique. At present, such mass spectra are 
available for rare gases, alkali metals, transition metals, 
semiconductors, and insulators. 1 

For elements whose cohesion is mainly due to non­
directional van der Waals interactions, such as rare-gas 
clusters, we expect the equilibrium structure to be close 
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packed and stability maxima to occur at sizes correspond­
ing to specially compact icosahedron arrangements at 
n =13,55,147,309, etc. 4 For simple metals, which have 
been successfully described by the jellium approximation, 
the stability has been found to be mainly determined by 
the kinetic energy of electrons in a jellium droplet rather 
than the atomic postions. 8 Materials with covalent bond­
ing, such as semiconductors, present a hybrid situation 
between these two cases. There, the strength of the direc­
tional covalent bonds depends on the atomic positions. 
While a strong surface tension due to many dangling 
bonds is expected to favor compact metallike structures at 
small cluster sizes, the increasing portion of bulklike 
atoms in larger clusters will finally induce a transition to 
more open crystal structures with reconstructed surfaces. 
The main objective of this investigation is to study the 
equilibrium structures and bonding in this class of materi­
als, in our case represented by silicon. While the struc­
ture of bulk silicon has been thoroughly studied both ex­
perimentally and theoretically,9 our study has been en­
couraged by recent photofragmentation experiments of 
small silicon clusters. 5 Our main results for the Sin clus­
ters have been published in a brief version elsewhere. 10 

Some of our conclusions could also be compared to other 
calculations, which were performed by using different 
quantum-chemical methods. II ,12 After our calculation 
was completed, we became aware of a cluster calculation, 
which applies a formalism similar to the tight-binding part 
of our calculation to a limited number of Si clusters and 
arrives at similar conclusions. 13 

Our paper is structured as follows: In Sec. II we out­
line the theoretical approach we use to describe small 
semiconductor clusters. In Sec. III we apply this formal­
ism to Si clusters and present results. The general con­
clusion and possible extensions of our study are summa­
rized in Sec. IV. 

II. THEORETICAL TOOLS 

The study of small clusters imposes an additional prob­
lem to that encountered when investigating solid-state sys-
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tems with many electrons. Successful approaches such as 
the local density approximation (LDA) have been 
developed,14 but the calculation effort required limits their 
application to a small number of structures. While this is 
not a serious problem in solid-state systems, where the 
geometric structure is known in many cases, in small clus­
ters the large number of configurational degrees of free­
dom for the ionic positions makes a true geometry optimi­
zation within the LDA virtually impossible. 

We therefore choose a dual-track approach. We first 
use an empirical tight-binding (TBJ method to presearch 
the 3n - 6 six-dimensional configuration space for possi­
ble equilibrium structures of an n atomic cluster. A limit­
ed number of geometries is then investigated more closely 
within the LDA. 

The tight-binding method we use here is an extension 
of a Hamiltonian, which has been previously successfully 

. . f . d ., 15 applied to the reconstruction 0 semlcon uctor sur,aces. 
The cohesive energy of the cluster E coh can be written as a 
sum of a band-structure energy E BS and a repulsive ener­
gy ER as 

Ecoh=EBS+ER . (2.1) 

The band-structure energy is given by 

n 

E BS = l:naEa-n l:n3E3+V l: (q;_qp)2, (2.2) 
a f3 ;=1 

where the first two terms denote the one-electron energy 
of the cluster and n isolated atoms, respectively, and the 
third is an intra-atomic Coulomb interaction. In our no­
tation, a and f3 correspond to electronic levels of the clus­
ter and isolated atoms, respectively, and Roman indices 
denote sites. The electronic levels Ea of the cluster are ob­
tained from a tight-binding Hamiltonian of the form 

(2.3) 

where E?f3 are the atomic levels and t;f3,j(3' are parametrized 
nearest-neighbor hopping integrals. Net charge transfers 
1l.q i = (q; - q p) at the atomic sites are obtained from a 
Mulliken popUlation analysis. Structures with large 1l.q; 
are effectively suppressed by the intra-atomic Coulomb in­
teractions. 

The repulsive energy ER consists of pairwise inter­
atomic interactions E,(dij) and a term which only de­
pends on the total number of bonds nb and the number of 
atoms n in the cluster, 

ER = l: E,(dij )-n [tP1(nb In )2+ tP2(nb Inl+l/IJ] 
;,j 

i <j 

(2.3) 

The constants tPl> tP2, and tP3 are used to exactly reproduce 
cohesive energies of dimers and bulk structures with 
different coordination numbers, such as the diamond and 
bcc structures of silicon. For dimers, these coefficients are 
selected in such a way that 

EjJimer =E,(d 12 ) (2.5) 

and E,(d) is defined as the difference of "exact" cohesive 

energy and a band-structure energy given by Eq. (2.2), as 

(2.6) 

To a good approximation, E~~,!,S coh can be obtained from 
ab initio calculations. For charged clusters, we only con­
sider obvious changes in the band-structure term E BS and 
keep ER the same as for neutrals. In summary, the above 
described parametrization of our tight-binding energy for­
mula is expected to produce a reasonable interpolation be­
tween dimers and selected bulk structures, which are 
reproduced exactly. Uncertainties remain as to the 
definition of a bond. Ideally, E BS + ER should be in­
dependent of this definition; however, the corrective term 
in (2.4) and the nearest-neighbor tight-binding Hamiltoni­
an are too simple to achieve this. We choose to call 
d < de a bond, which introduces discontinuities at the sad­
dl~ points of configurational energy surfaces. 

In the density functional part of our calculation, we 
solve self-consistently the set of Kohn-Sham equations 16 

(2.7a) 

and 
ace 

p(r)= l: 1 tPa(r) 12 (2.7b) 
a 

for a given cluster. Vion is the external pseudo potential 
due to the ions. The Hartree potential V H and the 
exchange-correlation potential Vxc , which is used within 
the LDA form are both functionals of the charge density 
p(r). For a self-consistent charge density corresponding 
to the electronic ground state, the total energy of the clus­
ter can be obtained from 

E tot = l: Ea-t f VH [p]p(r)d 3r 
a 

+ J p(r)(Exc[p]- Vxdp])d 3r +Eion-ion , (2.8) 

where EXc[p] is the exchange-correlation energy density 
and Eion.ion is the electrostatic interaction energy among 
the bare pseudoions. The cohesive (or atomization) ener­
gy of an n atomic cluster is finally given by 

Ecoh=Etot{clusterl-nEtatOsolated atom) . (2.9) 

In the following section we use the combined TB-LDA 
formalism to obtain the equilibrium geometries, energies, 
and electronic structure of small Si clusters. 

III. CALCULATIONS AND RESULTS 
FOR SMALL Si CLUSTERS 

In the tight-binding calculation of Si, we use a four­
state (s,Px,Py,Pz) Hamiltonian. 15 The diagonal elements 
are s- and p-Ievel energies15 Es = - 5.25 eV and Ep = 1.20 
eV, respectively. We use Slater-Koster parametrized 17 

hopping integrals which show a lIr: distance depen­
dence. Their values for r =2.35 A, which is the 
bulk equilibrium nearest-neighbor distance, are15 VssO' 
=-1.938 eV, VspO'=1.745 eV, VppO'=3.050 eV, and 
Vpp1T = -1.075 eV. The corresponding band structure of 
Si in the diamond structure is shown in Fig. 1. We use 
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FIG. 1. Band structure of bulk Si obtained from the tight­
binding Hamiltonian (dashed lines) and the density functional 
Hamiltonian (solid lines). 

u = 1 eV for the intra-atomic Coulomb interaction. The 
pairwise repulsive energy, defined by Eq. (2.6), is obtained 
by using the results of an ab initio configuration interac­
tion (Cn calculation18 for E coh (Si2 ) and is shown in Fig. 2. 
We used an analytic fit for the cohesive energy of Si2, 

given by18 

Ecoh(d)=A [(d/d*Y'-(d/d*)q]exp[y/[a -(d/d*W] , 

(3.1) 
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FIG. 2. Decomposition of the cohesive energy Ecoh of Sh into 
the (tight-binding) band-structure energy Ess and the repulsive 
energy ER, plotted against internuclear distance. 

where A =80716.3 eV, d* = 1. 781 A, p = -3.372, 
q = -0.476, y= -to. 706, a =2.807, and v=0.3to. The 
TB calculation gives a very good representation of Si di­
mer proRerties: the bond length d o=2.27 A (expt. value 
of 2.24 A), binding-energy Ecoh = -3.07 eV (expt. value 
of -3.0 eV), and vibration frequency wo=519 cm- 1 
(expt. value of 511 cm -1). In our nearest-neighbor Ham­
iltonian, the criterion for i and j being neighbors was that 
their distance dlj < 2. 55 A, which is the average of 
nearest- and second-nearest-neighbor distance in bulk Si, 
i.e., near the minimum in the radial distribution function. 
As mentioned above, this introduces some arbitrariness 
into the TB picture, since different nearest neighbor (nn) 
maps can lead to different energies for the same geometry, 
which could cause difficulties in the minimization pro­
cedure. For this reason, we choose nn maps and kept 
them fixed during geometry optimization. 

In our calculation, degenerate levels have been popu­
lated in a symmetric way. Geometries with partially oc­
cupied degenerate levels at the "Fermi energy" are unsta­
ble with respect to static Jahn-Teller distortions. The 
constants used in the bond-number-dependent term in Eq. 
(2.4) are 1",=0.225 eV, 1/12=1.945 eV, and 11'3=-1.03 
eV. These values set this term to zero for Si2 and correct­
ly reproduce ab initio cohesive energies9 of bulk Si in the 
diamond structure E coh = - 4. 64 e V and in the bcc struc­
ture E coh = -4.24 eV. Also other bulk properties are 
reproduced quite well, such as for Si (diamond) the lattice 
constant ao=5.47 A (expt. value of 5.43 A) and the bulk 
modulus B =0.88 a.u. (expt. value of 0.99 a.u.), and for 
the high-pressure phase Si(bcc) ao = 3. 25 A (calc. value of 
3.12A).9 

A useful help in the search for equilibrium geometries 
was the calculation of Hellman-Feynman forces, given by 

aEtot aEBS aER 
F i =---=--------, i=1, ... ,3n 

ari ari ari 
(3.2a) 

where 

(3.2b) 

The structures corresponding to a minimum energy were 
found by using a minimization procedure, which started 
from different "seed" geometries for each cluster size. A 
selected number of structures was subsequently analyzed 
using the density functional formalism. The ionic poten­
tials Vion in Eq. (2.7a) were replaced by norm-conserving 
pseudopotentials of the Hamann-Schluter-Chiang type. 19 

For the exchange-correlation functional we used the local 
form proposed by Ceperly and Alder. 2o Our basis con­
sisted of local s, p, and d orbitals, which have been ex­
panded in a Gaussian basis with two decays per orbital. 
Previously, this scheme reproduced plane-wave calcula­
tions of bulk Si properties with good accuracy. 21 Spin­
polarization effects have been neglected in our calculation. 
They are expected to change the cohesive properties, 11 but 
not the nature of the bonding, the equilibrium structures, 
and the trends in the cohesive energy. 
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FIG. 3. Cohesive energy per atom of small Sin, Sit, and Si;;­
clusters. Tight-binding results are connected by a dashed line; 
local-density functional results are connected by a solid line. 

In Fig. 3 we present results for the cohesion of Sin, Si,;-, 
and Si; clusters in their equilibrium structure. Numeri­
cal data for the cohesion as well as the band structure and 
repulsive part of Ecoh are summarized in Table I. The 
charged clusters should correspond to experimental condi­
tions. We first note that the TB and LDA results follow 
the same trend for the cohesive energy of neutral clusters. 
Quantitative differences exist, both in relative stabilities as 
well as in equilibrium geometries which we will discuss 
below. Due to the similarity of the cohesion curves for 
neutral and charged Sin clusters, we restrict most of our 
studies to neutral clusters. 

The equilibrium structures of Sin clusters up to a size 
n = 10 are shown in Fig. 4. Sh is reproduced exactly in 
the TB model, by construction of the Hamiltonian. How­
ever, it is underbound in the LDA calculation. 22 Si3 has 
an opening angle of ::::::80°, due to a lahn-Teller distor­
tion, and agrees with the singlet state found in indepen­
dent calculations. 23 ,24 Si4 is a flat rhombus with a side 
length of 2.3 A and a diagonal of 2.4 A. (The equilibrium 
TB values are ~ O. 1 A longer.) A relaxed tetrahedron is 
less favorable in energy by ~0.5 eV/atom. The most 
stable structure for Sis is a "squashed" trigonal bip.,Yram­
id. The basis triangle has a side length of 3.1 A; the 
bonds between its corners and the caps are 2.4 A long. 
We also find a metastable "pointed" geometry with a base 
length of 2.3 A and the cap-to-base bond length of 2.3 A. 
The equilibrium structure of Si6 is a distorted octahedron. 
The side length of the square base is 2.6 A (2.8 A in TB) 
and the cap bond length is 2.3 A (2.5 A in TB). This 
geometry is more stable by 0.6 eV /atom (0.7 eV /atom in 
TB) than the relaxed sixfold ring, s a bulk fragment, also 
shown in Fig. 4. The specially stable octahedron struc­
ture serves as a building block for Sin clusters up to 
n = 14. These are obtained by decorating the sides with 
tetrahedron caps in such a way that the mutual adatom 
distances are maximum. On the basis of our total-energy 
calculations, different atomic arrangements led to higher 
energies. These were, e.g., two twisted squares for Sig and 
the same structure decorated by a cap for Si9, which in 

TABLE I. LDA and TB results for the cohesive energy per atom Ecoh/n of Sin clusters. For TB the 
band-structure part E~~ In and the repulsive part EIB In of the cohesion are also given, as well as the 
average number nb In of nearest-neighbor bonds. 

LDA TB TB TB TB 
Cluster Ecoh/n Ecohln EBsin ERin nbln 
size n (eV) (eV) (eV) (eV) 

2 -0.6 -1.5 -4.9 3.4 0.50 
3 -2.1 -2.3 -6.9 4.6 1.00 
4 -2.8 -3.1 -8.4 5.3 1.25 
5 -3.3 -3.0 -8.7 5.7 1.80 
6 -3.5 -3.4 -9.4 6.0 2.00 
7 -3.4 -3.5 -9.7 6.2 2.14 
8 -3.3 -3.5 -9.7 6.2 2.25 
9 -3.5 -3.5 -9.5 6.0 2.22 

10 -4.0 -3.6 -9.8 6.2 2.40 
11 -3.8 -3.9 -10.3 6.4 2.45 
00 -5.1 -4.6 -12.6 8.0 2.00 
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FIG. 4. Ball and stick models for calculated equilibrium 
structures of small Sin clusters. The connections correspond to 
nearest-neighbor bonds. Also shown are the (metastable) crystal­
line fragments for n = 6 and 10. 

TB turned out to be unstable by 0.18 e V and 0.04 e V, re­
spectively, with respect to the octahedron-based struc­
tures. The equilibrium Si 10 cluster (O-Si 10) of four-capped 
octahedron with a side length of 2.5 A (3.1 A in TB) and 
a cap bond length of 2.3 A (2.4 A in TB). This structure 
is more stable by "",0.9 eV/atom (0.8 eV/atom in TB) 
than the adamantane cage (A-SilO), a building block of 
the silicon crystal in the diamond structure. These struc­
tures, both shown in Fig. 4, are topologically connected, 
as will be discussed later on. Surfaces of constant charge 
density, presented in Fig. 5, show the differences in the 
bonding type between the more stable octahedron and the 
adamantane structure of SilO. A structure consisting of 
two twisted squares on top of each other, each decorated 
by a cap, is found slightly unstable within LDA, while 
within TB it is favored by 0.3 eV /atom with respect to the 
"best" octahedron-based structure. Beyond n = 10, addi­
tional adatoms unfavorably overcoordinate the basic oc­
tahedron and do not further increase the binding energy 
per atom. These results for the Sin clusters agree well 
with recent quantum-chemical calculations where avail­
able. II - 13 

Comparing equilibrium TB and LDA structures, we 
find that TB tends to exaggerate bond lengths by typically 

0.1-0.2 A. This effect is more pronounced in larger clus­
ters. For highly coordinated sites, the pairwise repUlsion 
Er(d), obtained from Sh, shows too strong a distance 
dependence beyond the equilibrium distance. Equilibrium 
geometries can be strongly improved within the TB for­
malism, if Er(d) in Eq. (2.6) is reduced for large d, as can, 
e.g., be done by multiplying it by a smooth function: 

(3.3) 

where rp and ap are adjustable constants. Choosing rp 
larger than the equilibrium bond length d eq guarantees 
very little change in the energies for nearest-neighbor dis­
tances d $. d eq , smaller Er(d) for d > d eq , and the correct 
asymptotic behavior. ap and rp were obtained by repro­
ducing LDA results for both metastable states of Sis and 
SilO. The best fit yielded ap=4 A and rp=7A. To repro­
duce the Si2 and bulk Si data, the constants in the bond­
number-dependent term had also to be modified to 
IPI=0.350 eV, 1/12=0.407 eV, and 1/l3=-1.186 eV. Our 
experience with the TB Hamiltonian shows that the calcu­
lated types of equilibrium geometries are independent of 
the exact IPI values and of small modifications of the 
repulsive terms. In order to keep the TB model as trans­
parent as possible, we have not used the form (3.3) for the 
repulsion in the results presented in this paper. 

As mentioned before, the adamantane structure of SilO 
is topologically connected to the octahedron structure and 
can be obtained by moving the octahedron atoms at 
(±ro,O,O), (O,±ro,O), and (O,O,±ro) outwards by "",0.9 A 
and the tetrahedron atoms at (rt , ±rn =+= rt ) and 
( - rt , ±rt> ±rl ) inwards by about the same distance. Re­
sults of total-energy calculations for this transition are 
shown in Fig. 6. In Fig. 6(a) the TB total energy is given 
as a function of ro and rt for a nearest-neighbor bond map 
corresponding to an adamantane structure; in Fig. 6(b) 
the TB total-energy surface is given for an octahedron 
nearest-neighbor bond map. It is interesting to note that 
despite the different connectivities of these structures, the 
A-nn map shows an energy minimum near an 0 structure 
and vice versa. As can be seen in Fig. 6(c), which sum­
marizes LDA and TB results for the A --->-0 transforma­
tion along the minimum-energy path, the activation bar­
rier of "",0.1 eV /atom is quite small when compared with 
the energy difference AE "'" 0. 9 e V between these struc­
tures. The TB results, given by a dashed line, are in good 
qualitative agreement with the LDA results. 

In order to find general rules for the stability and equi­
librium structures of small Sin clusters, we investigated 
the nature of the highest occupied (HOMO) and lowest 
unoccupied (LUMO) molecular orbitals as well as the gap 
which separates them. The results are given in Table I. 
Within our TB model, an orbital has been called bonding 
(B) if it increased in energy upon cluster expansion, anti­
bonding (A) if it decreased in energy, and nonbonding (N) 
if its energy level did not change substantially. For the 
ease of comparison, LDA and TB gap energies have also 
been plotted as a function of cluster size in Fig. 7. We 
note that especially stable structures for n = 6 and 10 in 
LDA show large semiconducting gaps and have a bonding 
HOMO and a non- or antibonding LUMO. 
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FIG. 5. A "view" of constant valence charge density surfaces for the metastable adamantane (bottom) and stable octahedron (top) 
structures of Si 10. 
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pared to the tight-binding results (dashed lines). 

In order to compare our result to experimentally ob­
served fragmentation spectra,5 in Fig. 8(a) we show the 
fragmentation energy l1En , which here is defined by 

(3.4) 

and (up to a constant) corresponds to the energy involved 
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FIG. 7. Energy gap between the highest occupied and the 
lowest unoccupied cluster orbitals as a function of Sin cluster 
size. Local-density functional results (solid line) and tight­
binding results (dashed line) are shown. 
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-Ecoh(Sin ) as a function of cluster size n. The LDA results are 
given by the solid line, the TB results by the dashed line. (b) 
Typical Sit fragmentation mass spectrum as given in Ref. 5. 

in removing one Si atom from a Sin cluster. The pro­
nounced maxima of l1En for n = 6 and 10 correspond to 
the observed abundant cluster sizes shown in Fig. 8(b). 

Since the structures of Si6 and SilO are quite different 
from the crystal fragments of corresponding size, it is an 
important question, at which critical size n erit a crossover 
occurs between compact and open crystallike structures. 
It Seems plausible to assume that surface atoms tend to 
reduce their number of dangling bonds by assuming 
close-packed structures, while for the fully coordinated 
bulk atoms a transition to more compact structures is en­
ergetically unfavorable. We can roughly estimate n erit by 
comparing energies of Sin clusters in an open (diamond) 
and in a compact (bcc) structure, 

l1E(n)=Ecoh(open Sin )-Ecoh(compact Sin) 

and using 

l1E(n crit)=O 

(3.5) 

(3.6) 

as the transition criterion. Distinguishing ns surface 
atoms from (n -ns) bulk atoms in a Sin cluster, we ob­
tain 

(3.7) 
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where 
t:..Es =Ecoh,s(open Si)-Ecoh,s(compact Si) (3.8a) 

and 
t:..Eb = Ecoh,b (open Si)-Ecoh,b(compact Si) (3.8b) 

are assumed essentially independent of the cluster struc­
ture. Here, Ecoh,s and Ecoh,b are binding energies of sur­
face and bulk atoms, respectively. Equations (3.6) and 
(3.7) finally give as condition for the structural transition 

nscrit 

n crit 
(3.9) 

Since in small clusters, such as SilO, virtually all atoms are 
suface atoms, we can estimate t:..Es from 

(3.10) 

The result of our calculation yields t:..Es = - 0.9 e V. Pre­
vious calculations9 for bulk diamond and bcc Si give 
t:..Eb = +0.4 eV. Inserting these values into Eq. (3.10) we 
get nscrit/ncrit=0.3. The number of surface atoms ns in 
clusters of n atoms can be estimated from geometrical 
considerations. Let us consider spherical clusters of ra­
dius R, consisting of "cubic" atoms with a cube length r 
and R Ir = m, the number of shells. Then, 

ns 3 3 I 
-=---+-
n m m 2 m 3 

(3.11a) 

and 

n=t1Tm3. (3.11b) 

For large clusters, R Ir »1 and the terms of the order 
11m 2 and 11m 3 can be neglected. Then, we obtain 

361T n""'. (3.12) 
(nsln )3 

Using ns In = O. 3 we obtain for the critical cluster site 
n crit=4200 atoms, which is of course, a very rough esti­
mate. It is interesting to note that a very similar argu­
ment, applied to clusters of transition metals with a bulk 
bcc structure, leads to similar critical cluster sizes for the 
fcc--bcc transition. 25 Small deviations in nscrit In crit and 
additional correction terms will probably reduce n crit and 
lead to critical cluster sites of 102_ 103 atoms for the tran­
sition form compact to open crystal structures in silicon 
clusters. 

IV. DISCUSSION 

The use of a parametrized TB Hamiltonian for deter­
mining equilibrium structures seems reasonable in view of 
the large dimensionality of the configurational space and 
the small amount of computer time involved in those cal­
culations. The energy evaluation in TB, including forces, 
was - 500 times faster than within LDA. Also, the re­
sults of the TB calculations gave more reliable structures 
than a comparable scheme using an optimized form of 
two- and three-body potentials. 26 The determination of 
the parameters, used in the TB Hamiltonian, is, however, 
not unique. As can be seen in Fig. 1, the TB single-site 
energies and hopping integrals give a relatively good fit of 
the valence (but not the conduction) band in Si. To im-

prove results for other materials such as carbon, we select 
optimized electronic parameters from fits of all bands of 
different prototype structures. 27 

It has been shown in the last section that both structur­
al and electronic properties of small Si clusters are strong­
ly different from bulk crystal fragments. A Mulliken pop­
ulation analysis yielded an electronic configuration very 
close to s 2p 2 for all clusters studied here, in contrast to 
the sp 3 configuration in the crystal. A slightly decreasing 
population of s states from 1.95 electrons in Si2 to 1.7-1.9 
electrons in Si 10 shows the correct trend towards bulk 
configuration, but the absolute change is very small and 
supports our finding of very large cluster sizes necessary 
for a transition to bulk behavior. In large enough clusters 
with a considerable portion of fully coordinated atoms, 
these bulklike atoms with a sp 3 configuration, which 
prefer open crystal structures, will reverse the close­
packing tendency imposed on the cluster by the surface 
atoms with a s 2p 2 configuration. 

The results of our study indicate a strong interplay of 
the electronic and geometric structure in small Si (or more 
generally semiconductor) clusters. This behavior is quite 
different from both simple-metal clusters, where the elec­
tronic structure does not strongly depend on atomic posi­
tions, and from rare-gas clusters, where the equilibrium 
structure is rather independent from electronic states. 
Charging a Sin cluster can both induce or suppress a 
Jahn-Teller distortion. The same effect can occur due to 
level crossing upon bond-length changes. 

The latter effect has been studied for the transition from 
the metastable "pointed" (P) to the "squashed" (S) 
geometry of Sis. During this transition, a bonding orbital, 
which is a hybrid of pz states on the base and pz and s 
states on the caps and which is occupied in P-Si5, crosses 
the HOMO of P-Si5 near the saddle point of the total en­
ergy. For P-Sis, the HOMO is doubly degenerate and oc­
cupied by only two electrons, which gives rise to a Jahn­
Teller instability. Near the S-Si5 side of the transition 
path, the crossing orbital transfers both its electrons to the 
Sis HOMO thus removing the Jahn-Teller instability for 
S-Sis. From the Mulliken population analysis, the net 
charges on the cap decrease considerably from qc = -0.20 
in P-Sis to qc = -0.11 in the more symmetric S-Sis. 

A similar TB analysis has been performed for the 
adamantane (A) to the decorated octahedron (0) transi­
tion of SilO shown in Fig. 6. However, the limitations of 
the TB Hamiltonian, which depends on the nearest­
neighbors bond map, manifest themselves in this case, 
since the connectivities of A-SilO and O-SilO are different. 
Nevertheless, it is interesting to find in Figs. 6(a) and 6(b) 
local-energy minima corresponding to A and 0 structures 
for both nearest-neighbor maps. Both maps also give a 
consistent picture of the orbital behavior during this tran­
sition, which is similar to that observed in Sis. In A-SilO 
the three-fold-degenerate HOMO, which is a hybrid orbit­
al involving sand p states on all atoms, is occupied by 
only two electrons, which leads to a Jahn-Teller distor­
tion. Near the energy barrier for the transition to O-SilO, 
shown in Fig. 6(c), a previously occupied doubly degen­
erate orbital crosses the HOMO of A-SilO, becoming the 
LUMO of O-SilO and stabilizing this structure against 
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Jahn-Teller distortions. This orbital involves p states on 
the cap atoms, which hybridize with sand p orbitals (only 
those pointing out of the cubic ceIl) on the octahedron 
atoms. During this transition, the net charge on the 
threefold coordinated atoms qT = - O. 24 in the A struc­
ture strongly decreases in magnitude and changes sign to 
qT = +0.06 for the cap atoms in the more stable 0 struc­
ture. In the course of this transition, the semiconducting 
gap of 0.7 eV for A-SilO first closes near the barrier and 
then opens to its large O-SilO value of 2.9 eV (TB value). 

In order to understand the structure in the stability 
curves of Sin, Sit, and Si; clusters given in Fig. 3, we in­
vestigated the size dependence of the different energy 
terms constituting the TB cohesive energy. The average 
number of bonds per atom as well as the repulsive energy 
per atom turned out to be rather structureless. On the 
other hand, we found that the structure of the cohesive 
energy curve coincided quite well with that of the band­
structure energy. This feature is well known28 and is used 
to further analyze our results. 

To understand the trends in Ecoh(Sin ), in Fig. 7 and 
Table II we show LDA and TB results for the semicon­
ducting gap between the HOMO and LUMO. While 
LDA tends to underestimate gap energies, we still expect 
to obtain correct trends, which is confirmed also by com­
paring the LDA and TB curves. We find that structures 
with large gaps for n = 4, 6, and 10 correspond to espe­
cially stable cluster sizes. 

We further expect a large stability for structures with a 
bonding HOMO and an antibonding LUMO. In Table II 
we also tabulate the characters of these orbitals and, based 
on the above argument, indeed find Si6 and SilO stable 
when compared to clusters of neighboring sizes. 

It is interesting to draw general conclusions about the 
Si cluster growth and the stable geometries on the basis of 
our results. We speculate that geometries involving bond 
angles larger than 90°, such as in Si4 and Si6, should favor 
the sp hybridization and open the semiconducting gap, 
hence stabilizing the structures. On the other hand, the 

TABLE II. LDA and TB results for the gap energy Egap be-
tween the highest occupied (HOMO) and lowest unoccupied 
(LUMO) molecular orbitals, as well as their bonding behavior. 
B denotes bonding-, A denotes antibonding-, and N 
nonbonding-type orbital. 

Cluster ELDA gap Eill. HOMO LUMO 
size n (eV) (eV) type type 

2 0.0 0.0 B A 
3 0.9 1.3 B A 
4 1.1 2.6 B N 
5 1.8 0.7 B B 
6 2.1 1.5 B N 
7 0.9 2.0 B N 
8 0.4 0.5 N N 
9 0.4 0.7 B N 

10 1.2 2.9 B A 
11 0.9 2.0 N A 
00 0.6 1.1 B A 

octahedron structure of Si6 also corresponds to the most 
close-packed arrangement possible. The close-packing ar­
gument leads to octahedron-based structures with essen­
tially unchanged bond lengths, whose sides are decorated 
by caps. The cap bond lengths are smaller due to the low 
coordination of the cap atoms, so that the cap atoms 
significantly stabilize the basic octahedron. For n > 10, 
however, the overcoordination of the octahedron atoms 
turns out to be energetically unfavorable,29 which leaves 
O-SilO as an especially stable structure. A-SilO, on the 
other hand, turns out to be very unstable, mainly due to 
the low coordination of all of its atoms. 

In Fig. 8(a) we investigated the stability of Sin clusters 
with respect to evaporation of isolated Si atoms. This 
fragmentation process is least energy intensive and should 
occur most frequently, the exception being emission of 
very stable fragments such as Si6 or SilO for larger clus­
ters. We find an agreement between cluster sizes which 
are stable towards fragmentation and experimentally ob­
served fragmentation mass spectra of Sit reproduced in 
Fig. 8(b). This close agreement is nontrivial in view of the 
fact that the experimental conditions need not be close to 
equilibrium and also since we did not investigate charged 
clusters with the same precision as the neutral ones. 

In clusters of germanium, which shows a similar type 
of bonding as silicon, we expect very similar results for 
the equilibrium structures and magic numbers. This is 
supported by recent calcuiations30 of Ge2-Ge6 and by 
observed abundancies in Get mass spectra. 31 On the oth­
er hand, very different equilibrium structures and magic 
numbers are expected in carbon due to the significance of 
1T bonding in this system. 32 

In conclusion, we studied the structural stability and 
electronic properties of Sin, Sit, and Sit, clusters up to 
n = 14. A tight-binding formalism has been used to find 
stable structures, which were further investigated in the 
density functional formalism. No open structures or frag­
ments were found for these cluster sizes. A transition to 
open structures in expected to occur at cluster sizes 
n ~ 102 - 103. The most stable structures for n = 4, 6, and 
10 show a large semiconducting gap between highest oc­
cupied and lowest unoccupied states. These sizes coincide 
with observed abundancies in the mass spectra of Sin clus­
ters. 

ACKNOWLEDGMENTS 

We acknowledge useful discussions with R. R. Free­
man, L. A. Bloomfield, K. Raghavachari, D. R. Hamann, 
J. C. Phillips, J. J. Joannopoulos, and G. Pacchioni. We 
thank D. Mitchell for generating the computer plots of 
Fig. 5. One of us (D.T.) acknowledges the hospitality of 
the AT&T Bell Laboratories and financial support of the 
Deutsche Forschungsgemeinschaft (Sonderforschungs­
bereich 6) as well as the Stifterverband fur die Deutsche 
Wissenschaft. D.T. was further supported by the Direc­
tor, Office of Energy Research, Office of Basic Sciences, 
Material Sciences Division of the U.S. Department of En­
ergy under Contract No. DE-AC03-76SFOOO98. This re­
port was completed during a stay at the Aspen Physics 
Institute whose hospitality we acknowledge. 



36 STRUCTURE AND BONDING OF SMALL SEMICONDUCTOR CLUSTERS 1217 

IW. Brown, R. R. Freeman, K. Raghavachari, and M. Schliiter, 
Science 235, 860 (1987); M. Y. Chou and M. L. Cohen (un­
published). For a recent compendium of papers see Surf. Sci. 
156, (1985), Pts. 1 and 2. 

2M. F. Geuski, M. D. Morse, and R. E. Smalley, J. Chern. Phys. 
82,590 (1985). 

3G. Apai, J. F. Hamilton, J. Stohr, and A. Thompson, Phys. 
Rev. Lett. 43, 165 (1979). 

40. Echt, K. Sattler, and E. Recknagel, Phys. Rev. Lett. 47, 
1121 (1981). 

sL. A. Bloomfield, R. R. Freeman, and W. L. Brown, Phys. 
Rev. Lett. 54, 2246 (1985). 

6R. Rosetti, R. Hull, J. M. Gibson, and L. E. Brus, J. Chern. 
Phys. 82, 552 (1983). 

7c. J. Sandroff, D. M. Hwang, and W. H. Chang, Phys. Rev. B 
33, 5953 (1986). 

8W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, 
M. Y. Chou, and M. L. Cohen, Phys. Rev. Lett. 52, 2141 
(1984). 

9M. T. Yin and M. L. Cohen, Phys. Rev. Lett. 45, 1004 (1985). 
IOD. Tomanek and M. A. Schliiter, Phys. Rev. Lett. 56, 1055 

(1986). 
11K. Raghavachari and V. Logovinsky, Phys. Rev. Lett. 55, 

2853 (1985). 
12G. Pacchioni and J. Koutecky, J. Chern. Phys. 84, 3301 (1986). 
\JR. Mosseri and J. P. Gaspard, J. Phys. (Paris) Colloq. 42, C4-

245 (1981). 
14M. Schluter and L. J. Sham, Phys. Today 35(2), 30 (1982). 
ISD. J. Chadi, Phys. Rev. B 29, 785 (1984). 
16p. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); w. 

Kohn and L. J. Sham, Phys. Rev. 140, A1l33 (1965). 
17J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954). 

18K. Raghavachari (private communication). 
19D. R. Hamann, M. Schliiter, and C. Chiang, Phys. Rev. Lett. 

43, 1494 (1979). 
2oD. M. CeperJy and B. I. Alder, Phys. Rev. Lett. 45, 566 

(1980). 
21B. Holland, H. S. Greenside, and M. Schliiter, Phys. Status 

Solidi 126, 511 (1984). 
22While LDA generally tends to overbind, the limited basis size 

used here wilI tend to decrease the cohesion especially of very 
small clusters. 

23G. H. F. Dierksen, N. E. Griiner, J. Oddershede, and J. R. Sa­
bin, Chern. Phys. Lett. 117, 24 (1985); R. S. Grev and H. F. 
Schafer, ibid. 119, 111 (1985). 

24K. Raghavachari, J. Chern. Phys. 83, 3250 (1985); R. O. Jones, 
Phys. Rev. A 32, 2589 (1985). 

2sD. Tomanek, S. Mukherjee, and K. H. Bennemann, Phys. 
Rev. B 28, 665 (1983); 29, 1076(E) (1984). 

26R. Biswas and D. R. Hamann, Phys. Rev. B 34, 895 (1986). 
27D. Tomanek and M. A. Schliiter (unpublished). 
28J. C. Slater, Quantum Theory of Molecules and Solids 

(McGraw-Hill, New York, 1963), Vol. I. 
29M. R. Hoare and P. Pal, Adv. Phys. 20,161 (1971). 
30G. Pacchioni and J. Kontecky, Ber. Bunsenges. Phys. Chern. 

88, 242 (1984). 
31L. A. Bloomfield (private communication). 
32J. BernhoIc and J. C. Phillips, Phys. Rev. B 23, 7395 (1986); E. 

A. Rohlfing, D. M. Cox, and A. Kaldor, J. Chern. Phys. 81, 
3322 (1984); H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. 
Curl, and R. E. Smalley, Nature 318, 162 (1985); R. C. Had­
don, L. E. Brus, and K. Raghavachari, Chern. Phys. Lett. 125, 
459 (1986); K. Raghavachari and J. S. Binkley, ibid. 131, 165 
(1986). 



FIG. 5. A "view" of constant valence charge density surfaces for the metastable adamantane (bottom) and stable octahedron (top) 
structures of Si lO. 


