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We present a theory for the atomic force microscopy (AFM) of deformable surfaces and apply it to
graphite with and without intercalated atoms. Using continuum elasticity theory for graphite layers,
with parameters obtained from ab initio calculations, we determine quantitatively local distortions in the
vicinity of a sharp AFM tip as a function of the applied force. Our calculations show that AFM should
be a unique tool to determine local surface rigidity and to measure the healing length of graphite in the

vicinity of intercalated impurities or steps.

PACS numbers: 68.65.+g, 61.16.Di, 71.45.Nt

The recently developed' atomic force microscope
(AFM) is finding increasing recognition as a new power-
ful tool for the determination of surface structures, very
much as the similarly working scanning tunneling micro-
scope? (STM) did several years ago. The power of these
real-space (i.e., nondiffractive) techniques lies in the
ability to resolve isolated atomic defect structures such
as steps or impurity atoms. Like the more established
STM, the AFM uses an “atomically”’ sharp tip which
scans across the sample surface at a sample-to-tip sepa-
ration of few angstroms. The AFM probes the structure
of the sample by measuring the tip height z which leads
to a constant preset force F between the surface and the
tip as it scans the surface horizontally. This force is ob-
tained from the deflection of a soft spring which supports
the tip (see inset in Fig. 1). In contrast to this tech-
nique, the STM observes the tunneling current due to a
small bias voltage which is applied between the (con-
ducting) sample and the tip.

It has been shown? that under idealized conditions,
(STM) images reflect local density of states near the
Fermi level. A commonly used interpretation of STM
images in terms of atomic structure can be very mislead-
ing in special cases such as graphite where band-
structure effects make every other atom “disappear.”*
AFM images should be much simpler to interpret since
atomic forces reflect the total charge density. Present
theories of AFM have so far calculated the repulsive
force between a semi-infinite “periodic” tip with a rigid
surface’ or a single tip interacting with a model system
of finite thickness.®

In this Letter, we investigate the interaction between
an isolated tip and a deformable surface of a semi-
infinite system. Since ab initio calculations of distortions
near an isolated impurity in an extended system are
prohibitively time consuming and apply only to special
cases, we adopt a novel approach here. We calculate

bulk elastic constants from first principles and then
determine equilibrium deformations near structural im-
purities exactly using a continuum elastic theory.” This
procedure allows for a fairly simple adaptation to a
variety of geometries which are computationally beyond
the scope of a first-principles calculation (e.g., the dilute
limit). Since we are working with a system of
differential equations, several analytic and universal re-
sults have been obtained. A direct comparison with
AFM results showing atomic resolution is possible if one
identifies the envelope function associated with the atom-
ic displacements at the surface as given by the above
elastic continuum theory. The atomic resolution

o‘o .................................... P

z(X)

~1.0 PR T SO T SO S SR
4 5 8 7 9 10

r(8)

FIG. 1. Vertical position z of the topmost graphite layer as
a function of the radial distance r from the AFM tip. Results
for a tip force F=10"° N based on the calculated value of the
graphite flexural rigidity constant D =7589 K (solid line) are
compared to expected distortions for a reduced D=3795 K
(dashed line). Layer positions for zero applied force are shown
by the dotted line. Inset: actual geometry.
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sacrificed in the continuum approach can be regained by
placing discrete atoms on their distorted positions and
superposing their charge densities.

We apply our formalism to graphite and determine the
deformations due to intercalants and/or the AFM tip.
We will show that intercalant-induced deformations can
be observed by the AFM and that such images contain
valuable information about the healing length and local
surface rigidity. The semi-infinite system of graphite
layers is characterized by flexural rigidity D, transverse
rigidity K (proportional to Ca4), c-axis compressibility G
(proportional to C33), and interlayer spacing d. The
vertical distortion w,(r) of the surface layers due to a
general external force F(r) acting on the topmost layer
is given by

(DV* = KV)w +G(wy—wy) =F(r) . (1a)
The corresponding expression for deeper layers is
(DV* = KV Wy + G (—wp—1+2wp =Wy 41) =F, (1),
n=2. (1b)

The absolute vertical position of atoms in the nth layer
(with respect to the undistorted topmost layer) is then
given by

Z,(r) = —nd+w,(r) . )

We assume that the AFM tip is atomically sharp, as im-
plied by the name of the technique, and approximate the
external AFM force by a & function. Similarly, we mod-
el the effect of a single intercalant impurity in the first
gallery by &-function forces which will be discussed
below. To obtain the graphite layer distortions in
response to these forces, it is convenient to perform a
Fourier transformation of Eq. (1), which yields the re-
cursive relation

W:)i(lt(l;) -X(q)—wnfl(q)/wn(q) L@, =3,
where

L@ =} x(@) ~ Lx3(q) — 41}/ @
and

X(q) =g*+25q°+2. (5)

In Eq. (3), w,(q) is the Fourier transform of w,(x/lo),
where lo=(D/G)"* is the characteristic length of the
system and q=Iok is a dimensionless quantity. & is
defined by §=K/[2(DG)"?]. The distortion of the nth
graphite layer is related to wx(q) as

wa(q) ={L(qQ)} " ?wy(q), n=3. 6)

This equation, together with the Fourier transform of
Eq. (1), allows us to determine the distortion w, of each
individual layer. In the case of the AFM tip only, we ob-

tain
L(g)"™!
44+25¢2+2—-L(q) "’
where f; is the scaled tip force
fi=F/(DG)'. ®

In our calculation, an isolated intercalant impurity is
modeled by a pair of equal §-function-like forces acting
in opposite direction on the first and second layer. Their
strength is chosen in such a way that the interlayer dis-
tance at the intercalant site is the same as the diameter
d; of the (incompressible) intercalant. In linear-response
theory, all distortions w, are proportional to the applied
force. Moreover, the total layer distortion in the pres-
ence of an AFM tip and an intercalant is given by the
linear superposition of the distortions due to each of
them separately. In the limiting case of an isolated im-
purity, the distortions of the nth layer, w,, should be zero
in a rigid system (flexural rigidity D— o0). As can be
seen, this is indeed the case since f; =0 in Eq. (8) and
hence w, =0 in Eq. (7).

We determined the elastic constants of graphite from
a first-principles total-energy calculation within the
local-density approximation (LDA).® We used the ab
initio pseudopotential local orbital method which has
been described elsewhere® and successfully applied to
short-wavelength distortions of graphite. In our calcula-
tion, we replace ionic potentials by norm-conserving ion-
ic pseudopotentials of Hamann-Schliiter-Chiang type.'°
We use the Hedin-Lundqvist!' form of the exchange-
correlation potential. The LDA calculations are carried
out using a basis of Gaussian orbitals which are localized
on atomic sites. At each C site, we consider s and p or-
bitals with three radial Gaussian decays each, i.e., twelve
independent basis functions. We use an energy cutoff of
49 Ry in the Fourier expansion of the charge density in
order to ensure complete convergence of the LDA spec-
trum and total energies. The LDA charge density and
potentials have been obtained by sampling the Brillouin
zone with a fine mesh of 245 k points, using a special-
point scheme. 1

The accuracy of our LDA calculations has been first
checked by determining the in-plane C—C bond length
dc—c=1.42 A, the vibration frequency of the in-plane
mode w(E,;,) =1541 cm ~', and the out-of-plane mode
w(A45,) =809 cm~!. These values are in very good
agreement with experimental values'® dc-c=1.42 A,
@(E,) =1582 cm ~!, and w(4,,) =868 cm ! and pre-
viously calculated values'*!® dc-c=1.42 A, w(Ej,)
=1598 cm !, and w(A4,,) =839 cm ~!. In our calcula-
tion, we assumed AA layer stacking which is appropriate
for intercalated graphite. This explains the small
differences between our results and previous experimen-
tal and theoretical data which have been obtained for
ABAB stacked (hexagonal) graphite.
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In a second step, we used the LDA formalism to deter-
mine the value of the flexural rigidity constant and find it
to be D=7589 K, which also compares very favorably
with the experimental value'® D=7076 420 K. In the
following continuum calculation, we use this value and
experimental values'’ for the c-axis compressibility
G =789 K A ™4, transverse rigidity K =932 K A 72 and
the interlayer spacing d =3.35 A.

In Fig. 1 we compare calculated vertical positions z of
carbon atoms in the topmost layer in the vicinity of an
AFM tip pushing against the surface (solid and dashed
lines) to their position in the absence of external forces
(dotted line). In linear-response theory, surface distor-
tions w, (=z for the topmost layer) should be propor-
tional to the applied force F, but the healing length A, of
pristine graphite, corresponding to the distance at which
the layer distortion decreases to half its maximum value,
should be independent of F. On the other hand, we ex-
pect both A, and z to depend on the surface flexural rigi-
dity D. Our results for F, =10 "% N shows that Ap de-
creases from 4.2 to 3.2 A and the maximum layer distor-

2(K)

FIG. 2. Structure of graphite interacting with an AFM tip,
in case of a single intercalant impurity. (a) Positions z of three
topmost graphite layers, shown in a plane perpendicular to the
graphite layers. The intercalant and the tip lie along the hor-
izontal x axis. (b) 3D view of the topmost layer topography.
The intercalant with a diameter d; =5.3 A models a K atom
between the topmost and the second layer. The AFM tip,
which is 5 A away from the intercalant, exerts a force
F=10"° N onto the graphite substrate.
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tion z, at the tip position r =0 A increases from 0.67 to
0.84 A when the graphite flexural rigidity constant
D =7589 K is reduced to half its value. Since changes of
the vertical tip position due to force changes 6z,
=z,(F,) —z,(F,=0) depend sensitively on D, the AFM
measurement of &z, as a function of F, should provide a
unique experimental access to local elastic constants at
the surface. While it is difficult to determine precisely
the tip position z, for F =0, it is useful to note that 8z,
can be measured using 6z, =~z (F,+F/) —z,(F/) if
linear response is assumed.

Since within our continuum model, the vertical posi-
tion z, of an AFM tip scanning the surface of perfect
pristine graphite is constant for a constant force, such a
scan does not provide easy access to the healing length
A, discussed above. On the other hand, the healing
length in the vicinity of a structural defect, such as a step
or an intercalant in the first gallery, can be easily probed
by the AFM experiment. The model intercalant which
we consider in Fig. 2 is a K atom with a diameter
d;=5.3 A (larger than the graphite interlayer spacing
d=3.35 A). The AFM tip, which is 5 A away from the
intercalant, exerts a force F=10 ~° N onto the graphite
substrate. In Fig. 2(a) we show the vertical positions z
of carbon atoms in the three topmost graphite layers, in
a plane which contains the intercalant and the tip and
which is perpendicular to the layers. A 3D view of the
topmost layer topography in the presence of a single in-
tercalant impurity and the AFM tip is shown in Fig.
2(b). Our results in Fig. 2(a) show that graphite distor-
tions die out after the fourth graphite layer which would
justify the use of finite-thickness slabs for future first-
principles calculations of a discrete graphite lattice.

The profile of the graphite surface near a structural
impurity is accessible to the AFM experiment. In Fig. 3
we show the calculated vertical tip position z, as a func-
tion of the horizontal tip distance r, from the intercalant,
for a vanishing AFM force [Fig. 3(a)] and for F=10"°
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FIG. 3. Vertical position z; of the AFM tip as a function of
its radial distance r; from an intercalant with a diameter
d;=5.3 A. (a) Results for zero tip force based on the calculat-
ed value of the graphite flexural rigidity constant D =7589 K
(solid line) are compared to expected distortions for a reduced
D =3795 K (dashed line). (b) Corresponding results for a tip
force F=10"° N.
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N [Fig. 3(b)]. Results in Fig. 3(a) describe, in an alter-
native interpretation, the dependence of the topmost lay-
er topography on the flexural rigidity constant D and
show that the healing length A; near the intercalant de-
creases from 2.1 to 1.8 A as D decreases from 7589 K
(solid line) to 3795 K (dashed line). The most impor-
tant effect of a nonzero AFM force [Fig. 3(b)] is a
compression of the graphite substrate along the ¢ axis.
From the comparison of results for different values of D,
we find that the apparent size of the intercalant [given
by z,(r, =0) —z,(r,— )] increases by 0.14 A as D de-
creases from 7589 to 3795 K, but the values of the heal-
ing length A; lie close to the values for F=0. Local
changes in the layer rigidity D graphite are expected to
occur due to charge transfer near intercalant sites in in-
tercalation compounds (in analogy to similar observed
char;ges“"15 in dc-c) and are presently being investigat-
ed.!

In conclusion, we developed a theory for the atomic
force microscopy (AFM) of deformable surfaces, based
on a combination of ab initio density functional formal-
ism and continuum elasticity theory. We applied this
theory to graphite with and without intercalated atoms
and determined quantitatively local distortions in the vi-
cinity of a sharp AFM tip as a function of the applied
force. We believe that AFM should be a unique tool to
determine local surface rigidity and to measure the heal-
ing length of graphite in the vicinity of intercalated im-
purities or steps.
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