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AbslrneC We present a first-principles theory of atomic force microscopy (a) on layered 
elastic surfaces. Subswale distortions due to the AFM tip and intemlant impurities are 
described within continuum elasticity theory, using elastic constants determined from ob 
inirio density functional calculations. We apply this theoly to graphite and calculate local 
distortions in the vicinity of an AFM tip andlor an intercalant atom, Using this formalism, 
we discuss the e6ect of a finite size tip (or a graphite flake atlached to Lhe tip) on the 
substrate distortions and the mulling APM image. Our calculations show that the a 
should be a unique 1001 to determine the local surface rigidity and the healing length of 
graphite near s INcIu~~I  impurities. 

1. Introduction 

Since the first presentation of the atomic force microscope (AFM) by Binnig et a1 [l, 21 
in 1987, the field of surface imaging has experienced rapid development. Seveml 
groups have achieved atomic resolution on highly oriented pyrolytic graphite (HOPG) 
[3-51. The power of the AFM lies in its ability to resolve isolated atomic defect 
structures such as steps or impurity atoms on both conducting and insulating surfaces. 
Like the better established scanning tunnelling microscope (STM) [6], the AFM uses an 
‘atomically’ sharp tip which scans the sample surface at a sample-to-tip separation of a 
few angstroms. The AFM probes the substrate structure by measuring the equilibrium 
tip height zt during a horizontal scan of the surface along I for a constant preset 
extemal force (load) F, applied to the tip. The force between the AFM tip and the 
substrate is measured directly from the deflection of a soft cantilever supporting the 
tip. 

Present theories of AFM have so far calculated the force acting between a semi- 
infinite ‘periodic’ tip with a rigid surface [7] or a single tip interacting with a model 
system of finite thickness [S, 91. In this paper, we determine the interaction between 
an AFM tip and an elastic semi-infinite surface from first principles. We give a detailed 
description of the corresponding theory, which also underlies our recent letter on this 
subject [lo], and show how it can be improved and extended to new applications. 

8 Permanent address: Depanment of Applied Physics, lbhoku University, Sendai 980, Japan. 

0953-8984,92/174233+17504.50 @ 1992 IOP Publishing Lld 4233 



4234 G Ovemey et a1 

Since a first-principles calculation of long-range distortions near isolated impuri- 
ties in extended systems is computationally intractable at present, we develop a new 
general approach to this problem. We first use ab hiti0 calculations to determine 
the elastic response of the substrate to external forces. In a second step, we use this 
information in the framework of the continuum elasticity theory to determine defor- 
mations near structural impurities 110, 111. This procedure allows for a fairly simple 
adaptation of the formalism to a variety of geometries which are computationally 
beyond the scope of a first-principles calculation (e.g., the dilute limit). 
This paper is organized as follows. The theoretical formalism is outlined in section 

2. Computational details and results for a 'perfect' AFM interacting with graphite are 
presented in section 3. The special case of a graphite flake attached to the AFM tip 
is discussed in section 4. Finally, in section 5, we summarize our results and present 
conclusions. 

2. Theory 

21. Densiry functional calculatwm 

The elastic response of a solid to external forces can be obtained from first-principles 
total energy calculations within the density functional theory [12, 131. We use the 
locat density approximation (IDA) t o ~ t i  theory 1131 which expresses the total energy 
of the system in the ground state by 

E t o t = x % , k - ~ / d r  h ( p ) p - / d r  ~~ ~ v,(P)P + / d r  ~ ~,(p)p+EiOn-io. .  ~~~~~ (1) 

~~ ~ 
~~ 

~ 
~~ ~ 
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Here, VH is the Hartree potential due to the electron charge density p and V, 
is a local exchangecorrelation potential which is conventionally taken from a first- 
principles calculation of the electron gas. c,(p)p is the exchangecorrelation energy 
density and E,,-,,,, is the electrostatic repulsion energy between the bare ions. The 
correct electron density p and the LDA eigenvalues en,* in the ground state are 
obtained by solving the Kohn-Sham equations self-consistently [13] 

and 

yon is the potential due to the ion cores which-in the case of graphite-is re- 
placed by an ab initio pseudopotential generated within the scheme of Hamann et 
a1 [14]. The exchange-correlation energy is determined using the parametrization 
of Hedin and Lundqvist [U]. We expand the wave functions in a linear combina- 
tion of local Gaussian-type orbitals. We use the Cartesian Gaussians of the form 
z ' y ' ~ ~ e x p ( - a r ~ ) t  . These orbitals are typically located on atomic sites. In selected 

t An s-orbital is given by .xp(-ar') and the three p-orbitals are given by zexp(-ar2), gexp(-a$), 
and zexp(-ar2). The combination (I? + y* + i2)exp(-arz) descrih an s-orbital. 

~~ ~~~ ~ ~ 

~~ 

~~ 
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cases we extend our basis by floating orbitals on interstitial sites. At each C site, we 
consider s- and p-orbitals with three radial Gaussian decays each, i.e. twelve inde- 
pendent basis functions. The decays that minimize the total energy of graphite are 
[16, 17 a = 0.24, 0.797 and 2.65. We use an energy cutoff of 49 Ryd in the Fourier 
expansion of the charge density in order to ensure complete convergence of the IDA 
spectrum and total energies. The IDA charge density and potentials are obtained by 
sampling the Brillouin zone with a line mesh of 245 k points, using the special-point 
scheme of Chadi and Cohen 1181. 

22 Elasticity theoy for layered materials 
It appears highly desirable to describe the elastic behaviour of graphite in a general 
way, using a set of coupled differential equations. In such a case we can obtain 
several analytic and universal results. Moreover, this approach can be used directly to 
predict AFM images with atomic-scale resolution if we identify an envelope function 
associated with the atomic displacements at the surface as given by the following 
continuum elasticity theory. We apply our formalism to graphite and determine the 
deformations due to intercalants and/or the AFM tip. We will show that intercalant- 
induced deformations can be observed by the AFM and that such images contain 
valuable information about the local surface rigidity. 

We assume a semi-infinite system of graphite layers. Each graphite layer is consid- 
ered as a two-dimensional elastic continuous medium, or a thin elastic plate [19]. The 
AFM tip is characterized by the spatial distribution of forces acting on the substrate. 
An isolated intercalant impurity in the first gallery is modelled by an incompressible 
‘stick’ of finite thickness which is perpendicular to the first and second graphite layers. 
The semi-infinite system of graphite layers is characterized by the flexural rigidity D, 
transverse rigidity K (proportional to C,,), c-axis compressibility G (proportional 
to C,,), and the interlayer spacing d.  The relations between D, K and G and the 
elastic tensor components are 

K = C44d:-c G = C,/d D = -C,,h3 8 ( c12 cl, + c 4 4  ) (4) 
3 

where dc-c is the in-plane C-C bond length and h is called the effective layer 
thickness Since the quantity h is only meaningful in cases where h can be measured 
(e.g. macroscopic systems), we present a different way to express D (see (33)). The 
vertical distortions of the graphite layers U,(.) due to a general distribution of 
forces (originating from the AFM tip or an intercalant impurity) are solutions of the 
following set of partial differential equations 

(DV: - KVz)w, + G(w, - tu2) = F,(T)  

(DV: - I<Vf)w2 + G(-w,  + 2w, - w,) = F?(T) 

(00: - KV:)tu, + G(-w,-, + 2w, - w,+1 ) = F,,(r) 
The vector T is two-dimensional. The set of equations (5)  can be transformed into a 
dimensionless form using 

n 2 2 .  
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where I, is a characteristic length scale defining a displacement field 

u,(P) 5 W,, ( r ) .  (7) 

221. Defonnntionr due to the AFM t$. Consider a cylindrical AFM tip with radius 
R, at position r = 0. The total external force (load) F, is evenly distributed by a 
constant ‘hydrostatic’ pressure on the substrate and acts on the first layer. The force 
distribution due to this tip is given by 

and 

Fn(r) = O  n22. 

Here, e( R, - r) is the Heaviside step function 

0 i f r > R o  
1 i f r < & .  

B( R, - r) 5 

(9) 

We use R, as a model parameter to distinguish between ‘sharp’ and ‘dull’ AFM t ip.  
The net force applied on the surface through the tip is equal to the external load 
applied to the tip, Jdr Fl(r) = -Fm. Tip-induced substrate distortions due to a 
cylindrical force distribution are then given by 

. .., .. , , ,  ,,.. , , 

(0; - 26V: t 2)un - u,-~ - u,,+~ = 0 n 2 2 

where p, = &/lo .  ’Ib solve this set of equations, we first define the Fourier trans- 
formed distortion as 

, ,  , , , , ,  6,(q) , ,  E J d p  eiqPu,(p). (12) 

Then, equations (11) become 

Here, J,(qpo) is the Bessel function of order onet. For n 2 2, (13) yields the 
recursive relation 

t Equation 656W of 1201 has been used when Fourier transforming. 
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We make the m o a  that the ratio iin/iin-l is independent of the index n. Substi- 
tuting X ( q )  q4 + 26qa + 2, we obtain for this semi-infinite system 

Out of the two solutions of this quadratic equation,, we select the smaller root 

because L(q)  should vanish for large jql. ii, is related to ii, by 

and 

fiz(n) = Jxs)%(n). 

iLl(q) can now be determined from 

Combining this with (17), we obtain the corresponding expression for deeper layers, 

The vertical distortion w,(+) in real space can be finally determined using the inverse 
Fourier transformation 

In the limiting case of a rigid system (flexural rigidity D -+ CO) and a finite force, the 
layer distortions w, are zero. 

Equation (22) simplilies further in the m e  of a 'sharp' 6-function l i e  tip [lo], 
corresponding to po + 0, since 



4238 G Ovemey et al 

22.2 Lkformatiom due to an intercalant impuriy. In the next step, we consider an 
intercalant atom (such as K or CF) sandwiched in the first gallery. We model this 
intercalant by an incompressible ‘stick’ of finite thickness which is perpendicular to 
the first and second graphite layer. The intercalant exerts a force F,, on the upper 
and lower layer, which is evenly distributed through a constant ‘hydrostatic’ pressure. 
Let us consider the intercalant at the origin and describe the intercalant-induced 
substrate distortions by a force distribution similar to that of (8). In this case, in (8) 
F, is to be replaced by F,, and R, by RUC. In q-space, this leads to 

Fn(q)=O n>3.  

Here, pint = RinJlo and Jdr  F1,Jr) = &Emc. In analogy to the procedure used in 
the above subsection describing the AFM tip only, substituting fbc(g) ~ ~ ~ l , 2 ( g ) ~ ~  in 
(U), we get 

It can be readily be shown that, 

and 

The force distribution is constructed by imposing boundary conditions on the inter- 
layer distance in the first gallery, or equivalently on the difference of displacements 
A w ( r )  = wl(r) - w ~ ( T )  in presence of the intercalant. In the absence of an AFM 
tip, we require that T = 0 which is the position of the intercalant, 

It is reasonable to m u m e  that Aw(r = 0) depends only on the intercalant species 
(size and compressibility). A possible interaction between the tip and the intercalant 
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(e.g. via charge transfer), which would modify thjs quantity, is neglected in the 
present discussion, but we hope to investigate this in the future [21]. In the case 
of an incompressible intercalant impurity, we require Aw(r = 0) = dim - d, where 
dine is the diameter of the intercalant and d is the interlayer spacing. We can then 
calculate F.,, from (28). Once cat is known, we can determine the displacements 
of the first and second layer due to an intercalant by Fourier transforming (26) and 
(27). With the recursive equation (25), we get 

(29) 
F i n c  Jo(Qr/l0)J1(QPind(2- X ( q ) )  IL(q)I"-* 

T P i n C m  LmdQ (X(Q) - 1)(X(Q) - L ( Q ) )  - 1 
= 

where n 2 2. 

2.2.3. Deformations due to the AFM tip and an intercalant impuriy. Let us consider 
the AFM tip and the intercalant impurity simultaneously and define their positions 
(with respect to the origin) as rl and T ~ ,  respectively. In the harmonic theory, all 
distortions w, are proportional to the applied force. Consequently, the total layer 
distortion in the presence of an AFM tip and an intercalant is given by the linear 
superposition of distortions due to each of these separate interactions. If the AFM 
tip is at a finite distance R from the intercalant, given by R = lrl - +*I, the force 

has to be adjusted in order to keep Aw(+ = r2) unchanged. From now on 
we position the intercalant at the origin (r2 = 0). The modified intercalant force 
F,,(R) can be obtained from 

Aw(r = 0) = Awm t Aw'. 

Awm = wl(l+l = R)  - wz(l+l = R )  

A w l  = wl(+ = 0) - w2(r = 0). 

(30) 

Here, Aw- can be obtained using the expression in (22) 

(31) 

and Awr is given by using expression (29) for the layer distortions, as 

(32) 

Of course, for R + m, (30) reduces to (28). Once Cnc( R) has been determined, 
we can calculate the deformation of each layer due to an AFM tip and an intercalant 
impurity using (29) and (22) and the superposition principle. 

3. Computational details and results 

We used a first-principles density function calculation to  determine the equilibrium 
structure and elastic properties of graphite. Important parameters in our LDA calcu- 
lation have already been described in section 2.1. We found the calculated in-plane 
C C  bond length dc.c = 1.42 8, to be in excellent agreement with the experimental 
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P@re 1. Binding energy of graphite (with respect to isolated layers, per carbon atom) 
as a function of the icterlayer spacing d .  (a) lor hexagonal (or AB) and (b) for AA 
stacking of layas. The salid~line represents a Morse potential fit to the calculated dah 
points. 

results. Also, the equilibrium interlayer spacing d = 3.35 i%, determined from the 
energy versus d curve shown in figure 1, is identical to the observed valuet. 

Next we calculated the frequencies of the in-plane and the out-of-plane phonon 
modes. As shown in figure 2(a), the in-plane EZb, mode consists of in-plane dis- 
placements of the a-sublattice with respect to the p-sublattice. The out-of-plane 
A,, mode consists of small displacements along the e-axis of the a-sublattice with 
respect to the @-sublattice, as shown schematically in figure 2(b) (for this mode the 
C-C bond length has been kept constant). The vibration frequency can be obtained 
from a frozen phonon calculation, by calculating the total energy as a function of 
displacement. 

The phonon frequencies are given by the curvature of the total energy with 
respect to the displacement at equilibrium. Our calculated values for the phonon 
frequencies are w(E,,) = 1541 cm-I and w(AZu) = 809 cm-I. These values 
are in very g w d  agreement with experimental data [22] w(E,,) = 1582 cm-I and 
w(Azu)  = 868 cm-t and previously calculated values [23, 241 = 1598 cm-' 
and w( Az,) = 839 cm-'. In our calculation, we assumed the AA layer stacking that 
is appropriate for stage one intercalated graphite. This explains the small difference 
between our results and previous experimental and theoretical ~~ data which have been 
obtained for regular AB stacked (tieiagonal) graphite. 

In the calculation of the flexural rigidity Dt, we made the simplifying assumption 
that the weak interlayer interaction can be safely dropped when compared with the 
dominating in-plane interaction. Thk is true especially when the out-of-plane distor- 
tions w(r) are very small. Hence we consider a system of decoupled graphite layers 
that individually obey the equation of motion [I91 

(33) 

t In the case d -+ m, the energy E ( d )  corresponds to isolated layers. We avoided the lengthy LDA 
lotal energy calculation for an isolated graphite layer and treated it instead 85 a free parameter in the 
Morse fit. For the total energy of a monolayer we obtained -155.525 eV (Rgure l(a), AB stacking) and 
-155.550 eV (figure l(b), AA stacking). The small disagreement of 25 meV between these monolayer 
energies results from an incomplete basis in the IDA cakulatious. This uncertainly must bc considered 
when comparing the absolule stability of AB-vmus AA slacked graphite~in Bgurc I(a) and figure I(b). 
t D is related 10 the bending modulus B by D = qB. The proportionality conslant q = 
ZMc/(3\/sd&/Z) is the area m a s  density (in our case, Mc is the m a s  of a carbon afom and 
de-c = 1.42 A). The experimental value for B = (2.55 0.15) x lo-' cm' s - ~  is listed in 1221. 
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F b r e  2. (a) Schematic top view of the EZs, phonon mode of graphite. In-plane 
displacements ut2 of a l o m  in the 01- and P-sublattice are indicated by arrows. (b) 
Schematic side view of the Azu phonon mode of graphite. Out-of-plane displacements 
ut2 of atom in the a- and 8-sublattice are indicated by arrows. Ihe naresl-neighbour 
Cc bond length is kept constant. 

Here, r~ is the area mass density. In order to determine the value of D from our 
first-principles calculation, we first construct a harmonic lattice spring model (see 
figure 3). The long-wavelength behaviour of this model corresponds to (33). Then, 
the total harmonic distortion energy is given by 

In the long-wavelength limit,(34) leads to 

w 2 ( k )  = & ( - ~ / M c ) k * d &  (35) 

which is also the form of the dispersion relation obtained from (33). Here, M ,  is 
the mass of a carbon atom and dC-, = 1.42 k In this way, we can relate D to 
the microscopic force constant y. We have determined y from first-principles LDA 
calculations by creating short wavelength Azu out-of-plane distortion (discussed above 
and shown in figure 2(b)) and comparing the LDA energy with that obtained using 
(34). The value of y is 0.2584 x lo5 dyn cm-'. Using this value of y, equation (39, 
and the Fourier transformed (33), we can easily determine the flexural rigidity D and 
obtain the numerical value D = 7589 K, which compares very favourably with the 
experimental value D = 7076 f 420 IC We combined this value with experimental 
values [22] for the c-axis compressibility G = 789 K and the transverse rigidity 
I C  = 932 K A-Z in our continuum elasticity theory calculations described in section 
2.2. 
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F@m 3. Schematic top view of the graphite lattice and the spring model uscd 10 
describe the outaf-plane mode. The harmonic p i n g  mnsLBnt is 7. 

We apply this theory first to determine the distortion of graphite layers due to the 
m tip and an intercalant impurity and present results in figure 4. The calculated 
equilibrium z coordinates of carbon atoms in the three topmost graphite layers near 
the m tip (solid and dotted lines) are compared with the positions of the same 
in the absence of external forces (dashed lines) in figure 4(a) and (c). We also 
investigate the effect on equilibrium geomeay of local changes of the Eexural rigidity 
0, which can occur due to charge transfer near intercalant impurities. In figure 4 
we compare results for pristine graphite, obtained using D = 7589 K and given by 
solid lines, with those obtained using a reduced value D = 3795 K and given by 
dotted lies. In these calculations, we considered a cylindrical m tip with a radius 
R, = 2.75 k me 'hydrostatic' force distribution within R, is given by (8). Our 
calculation yields surface distortions w, (note that wl = z for the topmost layert) 
and the healing length A, of pristine graphite, corresponding to the distance at which 
the layer distortion decreases to half its maximum value. In the linear response 
theory, surface distortions are proportional to the applied load F,, but the healing 
length should be independent of Fat Clearly, both A, and 10, are expected to 
depend on the surface flexural rigidity D. 

Our resulfs for a load F, = N indicate that A, decreases fmm 5.56 A 
to 4.85 A and that the maximum layer distortion zl at the tip site T = 0 increases 
from 0.52 A to 0.60 A if the Eexural rigidity D is reduced to half its value. Since 
the vertical displacement of the AFM tip 62, = tl( F,) - zl( F, = 0) due to a 
load depends sensitively on D, the measurement of 62, as a function of F, should 
provide unique experimental access to this elastic constant and its variations along 
the surface. While the m can determine force differences to a high accuracy, the 
calibration of the zero-load point F, = 0 is very ditficult and uncertain. It is useful 
to note in this context that within the linear elasticity theory, the value of 6r, is not 
affected by a miscalibration of the force by p, since 6rl x zt(F, + p) - zt(p) if 
harmonic response is assumed. 

In our continuum model, the vertical position zI of an AFM tip does not depend 
on its horizontal position z during a scan of the surface at constant load. In this 
case, the AFM image does not provide any information about the substrate distortions 
near the tip, shown in figure 4(a) and (c), and the healing length A of graphite. The 
healing length can be easily probed by the AFM near a structural defect, such as a step 

t The absolute vertical position z of atoms in the nth layer (with rcrpxt U) the undistortcd topmmt 
layer) is the given by z(r) = -(n - l )d  + wn(r), where d = 3.35 A is the intcrlayer spacing. 
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Figure 4. Equilibrium s v U c l u ~  of graphite interacting with an APM tip, for a load 
N ((c) and (d)). Vertical displacemenu of cartan 

aloms in the three lopmosl layers are shown in a plane perpendicular to the layers, for a 
flexural rigidity D = 7589 K (solid lines) and D = 3795 K (dolled liner). The p i l i o n  
of unperturbed layers is given by the dashed lincs. Resulls for pristine graphite in (a) 
and (c) are mmpad with lhose for lhe case of a single inlerealant (modelled hy an 
incompressible infinitely thin ’stick’ of length din, = 5.3 A) in (b) and (d). m e  radius 
& of the cylindrical AFM tip is 2.75 A. 

N ((a) and (b)) and 5 x 

or an intercalant atom in the first gallery. In figure 4(b) and (d), we present results 
for a model intercalant representing a K atom. We use the value dint = 5.3 for 
the diameter of the intercalant, which is larger than the graphite interlayer spacing 
d = 3.35 k The force distribution of the intercalant is modelled by a pair of equal 
6-function-like forces acting in opposite directions on the first and second layer. The 
special case of an ‘infinitely thin‘ intercalant (Rbc -f 0) can be treated in analogy 
to the 6-function like tip, using (23). In figure 4(b) and (d), the horizontal distance 
between the AFM tip and the intercalant is assumed to be 5 k As in figure 4(a) and 
(c), the total load on the tip Fes is distributed evenly on to the substrate within the 
tip radius R, = 2.75 8, In figure 4(a) and (b), the load Fm = lo-’ N; in figure 4(c) 
and (d), Fa = 5 x lo-’ N. Results for the topmost three layers of pristine graphite, 
obtained using D = 7589 K and given by the solid line, are compared with those 
obtained using a reduced value D = 3795 K and given by the dotted line. 

The AFM image, reflecting the vertical tip position zt as a function of the hor- 
izontal distance r1 from the intercalant, is shown in figure 5 for different AFM tip 
loads and tip shapes, and for a ‘rigid’ and a ‘soft’ surface. The ‘rigid’ surface is given 
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by D = 7589 K; and in the case of the ‘soft’ surface, D is chosen to be 3795 K. 
figure 5(a) shows the image in the case of zero load F, = 0, which obviously re- 
flects the equilibrium surface structure in the absence of the tip. More interesting 
are the images obtained for a non-zero load Fen = lo-’ N applied to the surface 
via a &function AFM tip (figure 5(b)) and a cylindrical AFM tip with a constant force 
distribution inside the radius R, = 2.75 A (figure 5(c)). The intercalant is modelled 
by an incompressible infinitely thin ’stick’ in all three cases. A comparison of fig- 
ures @) and (c) confirms the intuitive result that differences between the ‘rigid’ and 
the ‘soft’ surface vanish gradually with increasing tip size R,. In general, we expect 
the flexural rigidity D to change in the case of charge transfer between intercalant 
atoms and layers in graphite intercalation compounds, in analogy to similar observed 
changes [U, 241 of dc-c Systems with intercalants should be correctly described by 
a locally variable D(r) ,  which shows strongest deviation from the pristine graphite 
value at the intercalant site r = 0. These local changes are partly smoothed out by 
a finitesize tip, and the observed AFM corrugation is expected to lie between the 
calculated curves for the ‘soft’ and ‘rigid’ surface. 

% - 0  
- 0.5 

01) 
-0.5 

-1.0 -1.0 
0 5 100 5 too 5 IO 

rdl) rdl) 4) 
Plgure 5. Vertical position I, of Ihe AFM tip as a function of its horizontal dstance 
n from a “Id K intety$ant atom with diameter din, = 5.3 A. (a) Results for 
z m  load on the tip for pristine graphite with D = 7589 K (solid line) arc compared 
with distortions for a reduced D = 3795 K (dashed line). (b) Consponding resule 
for a load Fa = lo-* N applied ria a 6-function AFM tip. (e) Results ior a load 
Fm = 1O-O N and a cylindrical AFM tip with a constant force dstribution inside the 
radius Ro = 2.15 A. 

The influence of the tip sue on the layer distortions (and hence on the equilibrium 
tip position z,)  is shown in figure 6. We considered a cylindrical AFM tip with a 
constant ‘hydrostatic’ force distribution inside the variable radius R,, given by (8). 
The distortion of the topmost graphite layer at the centre of the AM tip, wl(v = 0), 
is shown as a function of Ro for two different loads (Fen = io-’ N and 5 x lo-’ N). 
Results presented in figure 6 have been obtained using the flexural rigidity of pristine 
graphite D = 7589 K. 

Experimental investigations of graphite intercalation compounds (GICS) using the 
STM or AFM are scarce at present. In STM experiments for donor GICS LiC,, R b q ,  
CsG,, and KC, the exact position of the intercalants in the first gallery has been 
resolved in most cases [25, 261. The corresponding AFM experiments are still in 
progress [27J 

Once the equilibrium positions of the carbon atoms have been determined for 
a given force distribution, the total charge density p of the deformed graphite can 
be approximated by a superposition of atomic charge densities obtained from LDA. 
This approach is justified by the level of agreement between the charge densities 
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w tip as a function of the effective tip radius &. The total loads on the tip are 
F, = 5 x lo-@ N (dashed line) and F e  = lO-9 N (dotted line). 

of undistorted graphite layers, which have been obtained from a first-principles IDA 
surface calculation and from superposition of atomic charge densities These charge 
densities differ by less than 5%, mainly due to the incorrect description of the n- 
bonds in graphite as being a superposition of atomic charge densities. This small 
inaccuracy does not affect the corrugations that are observed in the AFM. figure 
7 shows the calculated charge distribution which-in the framework of embedded- 
atom-like theories-is indicative of the interatomic interactions within the crystal and 
between an AFM tip and the substrate. The surface deformations for the applied load 
Fen = lo-$ N correspond to those shown in figure 4(a) and (b). 

rlgure 1. iota1 cnarge aensiry p oi a one-atom ra APM rip inieracring w i n  m e  
elastic surface of hexagonal graphite near the on-top site, for a load Fe = 1O-O N. 
For this load, the distance between the Pd AFM tip and the graphite surface is 2.42 A 
[30]. Contours of con~tant p are shom for the three topmost graphite layers in the ZI 
plane perpendicular to the surface. ?he ratio of WO ConseCutive charge density contours 
p(n  + l ) /p (n)  is 1.5 

Our predictions for apparent tip corrugations still hold in the presence of 
Van der Waals forces between the tip and the substrate. These long-range forces 
do not result in additional AFM corrugations and are effectively compensated in the 
experiment by an additional force applied on the tip suspension [28]. In order to 
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estimate the effect of Van der Waals forces on the AFM image, we model the AFM 
tip by a conus with an opening angle a = 4.5‘. Following Andes and Heiden [29], 
we obtain a total Van der Waals force Fcoae(z) = Ab(tana)’/(6z), where A, is 
the Hamaker constant for the graphite sample (Ab = 3 x J). We find that the 
magnitude and site dependence of Van der Waals interactions between the AFM tip 
and the surface are negligible as compared with the closed-shell repulsion in the weak 
repulsive region (distance between AFM tip and surface smaller than about 2.5 A). In 
this distance range, we obtain, for a conical tip, forces of about 0.25 nN and 0.16 nN 
for tip/sample separations of 20 A and 3.0 respectively, which are much smaller 
than the forces obtained from our LDA calculations published in [30]. In 1301, we 
obtained 5.0 nN and 4.1 nN for distances of 20 A and 3.0 respectively. At much 
larger tip/sample separations, the Van der Waals forces dominate the tipsubstrate 
interaction, but do not show measurable corrugations on the atomic scale. 

4. Interaction between a graphite flake and the surface of graphite 

In our theory, we have so far modelled the AFM tips either by infinitely sharp objects 
with a 6-function force distribution [lo], or by cylinders with a constant force distri- 
bution inside a finite radius R,. The large cylindrical AFM tip is clearly not a very 
realistic description of a large AFM tip, due to the neglect of atomic structure in the 
tip. The assumption of a constant ‘hydrostatic’ distribution of the AFM load in the 
tip is also likely to suppress atomic-scale corrugations in the AFM images. The other 
limiting case of a ‘sharp’ AFM tip leads to considerable local substrate deformation 
even in the case of moderate loads F~ % N. Loads exceeding lo-* N cause a 
deformation beyond the elastic limit and are likely to destroy the surface [30]. Ob- 
viously, none of these models can simply explain the experimentally achieved atomic 
resolution on graphite for loads as large as 

We find WO possible ways to explain this observation. First, we consider the 
surface covered by a protective layer (thin film) which mediates the force between a 
‘sharp’ AFhi tip and the elastic substrate 1311. The finite Viscosity of the film helps to 
spread the AFM load across a larger area and to decrease local substrate deformations, 
hence extending the applicable force range. The atomic-scale corrugation can then 
be attributed to the ‘floating’ AFM tip. This mechanism has been used previously 
[31, 321 to explain apparently huge corrugations in STM images of graphite exposed 
to air [33, 341. It is questionable, however, as to whether this effect can extend the 
apparent elastic limit of graphite by a factor of ten or more, as the value of the AFM 
load lo-’ N would suggest [3]. 

A second way to obtain atomic resolution for a large AFM load could be to attach 
a graphite ‘flake’ to the AFM tip. The m tip is likely to ‘pick up’ such a flake 
during a large-area scan of graphite. In this case, the AFM load would be effectively 
spread across a large substrate area since graphite behaves like a plate with a large 
flexural rigidity. In this case, it is obvious that the measured corrugation depends 
strongly on the orientation between the flake and the surface, as well as on the scan 
direction. The dependency of the resolution in m on the type and size of such 
multiple-atom tips has been discussed previously [30, 351. In this section, we present 
numerical results for the interaction between a graphite flake and a graphite surface 
and investigate the atomic-scale resolution as a function of AFM load. 

We model a large flake by a monolayer of graphite and determine the flake- 
substrate interaction from first principles. This assumption holds for large flakes 

N [3]. 
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where the fraction of boundary atoms is negligible. Due to the computational com- 
plexity of the ub initio LDA calculations, we are limited to a few highly symmetric 
flake/graphite geometries which-in the bulk-correspond to a different layer stack- 
ing. Let us now consider a graphite flake perfectly aligned (i AA stacking) with 
the topmost graphite layer (inset in figure 8). During a horizontal AFM scan of the 
surface (for a scan along the C-C bond direction), the Bake passes through the layer 
stacking sequence AA, AB, AB, AA, . . . . The latter also defines the horizontal tip 
position z1 as shown in figure 8. Note that all flake a t o m  are in the 'on-top site' 
in the AA stacking, and that every other flake atom is at the 'hollow site' in the 
AB stacking. We consider the total AFM load F- evenly distributed over the whole 
n-atom flake, so that the load per carbon atom in the flake is 

f, = F,/n. 

For a large flake (consisting of about 7-20 hexagons) attached to a 'dull' AFM tip, we 
ignore bending and consider the interlayer spacing between the Bake and the surface 
as constant. Furthermore, we assume that the layer stacking of the substrate remains 
unchanged during the scan of the surface. This is reasonable because of the large size. 
diRerence between the flake and a surface layer, and since the AFM measurements 
are highly reproducible. 

Flgum S. Vertical equilibrium position zr of an AFM lip covered by a graphite flake, as a 
function of its horizontal position zL (see inset). The flake is modelled by a monolayer 
of graphite. The external load (per C atom in the Rake) is lo-' N. The labels on 
the I, axis denote the stacking between the flake and the topmost graphite layer. The 
solid line connecting the IBA data points is obtained from a Fourier interpolation and 
is explained in the text. The C-C bond length dc-c is 1.42 A. 

In order to determine the flake-graphite interaction, we make use of our total 
energy calculations for bulk graphite with AB and AA layer stacking as given in figure 
1. Since the LDA calculations of E ( d )  are performed within the LDA formalism, their 
validity is not limited to the elastic region of interactions. The force F between the 
layers is given by the derivative of the cohesive energy E with respect to interlayer 
spacing d, as 

F = - O E ( d ) / O d .  (37) 

Due to the nature of the weak interlayer coupling, we only consider pairwise interlayer 
interactions and use F for the flake/surface interaction. The equilibrium spacing 
between the layers can be obtained from F = f,,. We find it convenient to fit 
the LDA data by a Morse function which converges to zero for isolated graphite 
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layers (d -+ 03). Of course, this simple description of interlayer forces breaks down 
at very large pressures (corresponding to F > lo-@ N). In this force region, not 
discussed in this paper, the interlayer spacings become comparable to the in-layer 
bond length dc-c = 1.42 A and we expect large changes of hybridization, buckling 
and a transition to the diamond structure (171. 

Figure 8 shows the expected corrugation for an AFM tip covered by a graphite 
flake and for a load (per C atom in the flake) f, = lo-’ N. The continuous line 
connecting the IDA data points in figure 8 has been obtained from a Fourier expansion 
of the force field over the reciprocal lattice. We kept only the lowest component$ 
of this expansion and determined the expansion coefficients from the IDA results for 
the high-symmetry AA and AB geometries Since the present lower limit on vertical 
resolution is Az, 2 0.05 84 the difference Az, = 0.2 A between the ‘on-top site’ 
(corresponding to the AA stacking) and the ‘hollow site’ (corresponding to the AB 
stacking) can easily be detected. Figure 8 suggests, however, that two adjacent AB 
sites can barely be distinguished at this load. In this case, the AFM would not be 
capable of distinguishing individual carbon atoms and the AFM image would reflect 
only a triangular lattice with a lattice mnstant of 3dc-,. Our calculated cormgations 
of about 0.2 A are in very good agreement with the experimental values (0.1-0.3 A) 
of Meyer er al [3]. At higher loads, much higher corrugations (of several angstroms) 
are observed. We speculate that in this load region, the tipsubstrate interaction 
may be destructive and/or reflect the effect of atomic-scale friction between tip and 
substrate. It is clear that an additional orientational misalignment between the flake 
and the substrate would decrease this resolution. Since the rotated flake may be 
incommensurate with the graphite substrate, or mmmensurate in a very large unit 
cell, such orientational misalignment could also lead to superstructures in AFM images. 

5. Summary and conclusions 

In conclusion, we developed a first-principles theory for the atomic force microscopy 
(m) of layered elastic materials. This theory uses a new approach which combines 
the ab inirio density functional formalism and continuum elasticity theory. We applied 
this theory to graphite with and without intercalant impurities and quantitatively 
determined local distortions in the vicinity of the AFM tip as a function of the applied 
load. Using this formalism, we investigated the effect of a finite-size tip on the 
substrate distortions and the resulting AFM image. In the case of an ‘atomically 
sharp’ AFM tip we concluded that AFM is capable of determining focal changes of 
the surface rigidity and of measuring the healing length of graphite in the vicinity of 
intercalant impurities or other defects. In the case of a graphite flake attached to the 
tip we showed that the AFM image shows a triangular lattice with a lattice constant 
of 3dc-,; individual carbon atoms can be barely resolved. The graphite flake also 
helps to distribute the AFM load over a large surface area. In this way it is possible 
to observe atomic structures at AFM loads as large as lo-’ N without destroying the 
surface. 
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