PHYSICAL REVIEW B

VOLUME 44, NUMBER 23

15 DECEMBER 1991-1

Effect of adsorbates on surface phonon modes: H on Pd(001) and Pd(110)
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We investigate the effect of adsorbates on surface vibrations by calculating the phonon spectra of
clean and hydrogen-covered (001) and (110) surfaces of Pd. The dynamical matrix of these systems is
determined using a model many-body alloy Hamiltonian based on ab initio density-functional results
for these systems, with no adjustable parameters for surface properties. The most pronounced effect
of hydrogen is a strong softening of the Rayleigh wave on Pd(001) and a hardening of surface modes
on Pd(001) and Pd(110) with vibration amplitudes confined to the surface layer.

I. INTRODUCTION

The interaction of hydrogen with transition metals is a
fundamentally interesting topic with wide ranging tech-
nological applications.! The particular interest in Pd is
motivated to a large degree by the ability of this metal to
form hydrides and thereby to act as a medium for hydro-
gen storage. Hydrogen embrittlement, on the other hand,
is a matter of great concern.? The crucial step in the pro-
cess of bulk hydride formation, which has received most
attention, involves the dissociative adsorption of hydro-
gen on the surface.

Extensive studies of the adsorbate phase include
the characterization of the H-metal bond, hydrogen-
induced surface relaxation and reconstruction, and ef-
fect of hydrogen on the electronic structure of the metal
substrate.37!3 So far, most research effort has been fo-
cused on the adsorption geometry and on the electronic
and structural properties. Surface phonons have received
far less attention in the recent literature, in spite of the
wealth of information they contain about the nature of
bonding at surfaces. This is caused mainly by the dif-
ficulty to measure and calculate reliable surface phonon
dispersion curves throughout the whole surface Brillouin
zone.

Only recently, He time-of-flight spectroscopy and
electron-energy-loss spectroscopy!®72! (EELS) have been
used to measure the dispersion curves of surface phonons
on a variety of metal substrates. The quantitative in-
terpretation of these data is lacking in most cases, since
predictive ab nitio calculations (such as “frozen-phonon”
calculations) are computationally very involved. Only
in selected cases, local-density approximation?? (LDA)
calculations have been performed for the high-symmetry
modes.?3

The majority of published phonon calculations use
lattice dynamics based on simple two- and three-body
potentials.?4727 These types of calculations use bulk and
surface interatomic force constants and distances as in-
dependent parameters which are chosen to fit the experi-
mental results.!® In general, these calculations show good
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agreement with the observed data. The predictive power
is limited by the generally large number of force-constant
parameters that depend on the model, the system, and
the surface studied. While these calculations can provide
arough guidance in the interpretation of experimental re-
sults, direct comparisons between different models are of
limited use.

More recently, the embedded-atom method?® (EAM)
has been used to calculate phonon dispersion relations
on surfaces such as Cu(100), Cu(111), and Ag(111).2973!
The major difference to the calculations quoted above
is that all parameters have been obtained by fitting the
measured bulk properties. The EAM has proven to be
quite successful in the prediction of surface phonon spec-
tra and the corresponding changes of interatomic force
constants and distances at surfaces. The major weakness
of these calculations is the limitation to single-component
systems, since charge transfers between different sites are
assumed to be zero. Of less importance is the fact that
the success of the EAM technique depends on the type
of experimental data and the fit used to reproduce bulk
properties.

In this paper, we develop a model many-body alloy
(MBA) Hamiltonian, based on ab initio calculations of
bulk materials (both single component and alloys). This
Hamiltonian is used to determine the structural relax-
ations and phonon spectra of clean and hydrogen cov-
ered surfaces of Pd. We show that the MBA Hamiltonian
can be easily applied to many alloy systems, and can be
uniquely determined from a set of ab initio calculations
with no free parameters.

This paper is structured as follows. In Sec. II, we de-
rive the many-body alloy Hamiltonian and summarize
the procedure to calculate surface phonons. In Sec. III,
we determine the parameters in the MBA Hamiltonian
using ab inztio results for the equilibrium structure and
binding energy of bulk materials, with specific emphasis
on the H/Pd system. We test this Hamiltonian by cal-
culating the equilibrium structure and energy of bulk Pd
and PdH, as well as H-free and H-covered Pd(001) and
Pd(110) surfaces. In Sec. IV, we calculate the phonon
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spectra for bulk Pd and PdH, as well as the clean and H-
covered Pd(001) and Pd(110) surfaces. Finally, in Sec. V,
we conclude this paper with general remarks.

II. THE MANY-BODY ALLOY HAMILTONIAN

The many-body alloy Hamiltonian is an extension of
a total energy scheme, which has been successfully used
previously to study the electronic and structural proper-
ties of small clusters, surfaces of metals, and dilute metal
alloys.32735 As discussed earlier,32734 the total cohesive
energy of the crystal can be decomposed into individual
atomic binding energies E (), as

ZEcoh(i). (1)

The binding energy of atom i consists of an attractive
part due to the hybridization of orbitals, EZ5(i), and a
term ET(i) describing repulsive interactions. We have

Ecoh( ) EBS( )+ ER (2). (2)
Different simplified parametrization forms have been
proposed3® for the many-body energy EBS(:). The
embedded-atom scheme?® takes EP° (i) as a unique func-
tion of the total charge density of the unperturbed host at
the site 7. Since this parametrization might cause prob-
lems in the case of alloys with nonzero charge transfer, we
base our expression for EZ5(i) on a tight-binding Hamil-
tonian. In a one-electron picture, the binding energy of
atom 7 i1s given by an integral over the local density of
states at 7, N;(F), as

Econ(tot) =

Ep

EBS(i) = — / (E - Eo)N;(E)dE. (3)
-0

In the second-moment approximation, EZ9 (%) is propor-

tional to the effective bandwidth, which in turn is pro-

portional to the square root of the second moment My(%)

of the local density of states. We obtain

EBS (i) o« My(3)V? = (Zt”y/? o (Ze—w-:)l/?.

i#i i#i

(4)

In the last part of this equation, we have related M, to

the hopping integral ¢;; between neighboring sites ¢ and j

and assumed an exponential distance dependence of the
effective (screened) hopping integrals, as t(r) o e 77",

The repulsive part is parametrized by a pairwise Born-

Mayer potential with an exponential distance depen-

dence, as
ER(i) « Ze"’r'j, (5)
J#i
We obtain
Eeon(i) = EBS (i) + Ef(d)

B

Il

+elt Y exp [— (A - )] . (6)

J#t
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Here, r;; is the distance between atoms ¢ and j. Param-
eters p and ¢ describe the distance dependence of the
hopping integrals and the Born-Mayer interactions, re-
spectively, and are related to the bulk elastic properties.
In the case of a single-componeu:t bulk crystal, Eq. (6)
can be used to reproduce the equilibrium properties, such
as the equilibrium nearest-neighbor distance 7y and the
bulk cohesive energy Fcon(bulk). In this case, assuming
isotropic hopping integrals, £; and e(’f in Eq. (6) are given
by

_ Eeop(bulk) ;
fo= (1 - ¢/p)(Zou)*/?’ @
R 50 q
£y = =, (8)
"TE b

where Zpyk 1s the bulk coordination number.
For systems with more than one component (such as
alloys and compounds), Eq. (6) can be generalized to

L. 1/2
Ecoh(i,a) = - {Zf&ap exp [_2901[3 (M _ 1):| }

i 70,ap
+ D eapexn|-pop (22 -1)] . @
— 70,ap8
J#L
where a and B represent the types of atoms i and j,
respectively.

As we discussed above, the Hamiltonian underlying
the energy expression in Eq. (9) describes the essen-
tial physics governing cohesion in many solids. The
large flexibility and the microscopic basis for the descrip-
tion of many-body attractive interactions in alloys makes
the MBA Hamiltonian superior to embedded-atom-like
schemes?®3® for two main reasons. First, unlike the
EAM,? Eq. (9) does distinguish the binding changes of
atom ¢ surrounded either by Z, atoms of type a or Zg
atoms of type  even in the case that the charge den-
sity at site ¢ due to the surrounding atoms is the same.
Second, in contrast to the EAM, our approach does not
assume local charge neutrality in alloys. For this rea-
son, we feel confident to apply this energy expression as
a physically sensible interpolation scheme to determine
the energy of structures with low symmetry, once the
corresponding ab initio data for high symmetry struc-
tures are available. Specifically, we will use this energy
expression to find total energy changes due to small lat-
tice distortions in the case of a phonon calculation for
the Pd-H system which we describe below.

The phonon spectrum can be obtained from the dy-
namical matrix.3” The dynamical matrix D(k), corre-
sponding to wave vector k, is given by

Dagpry(k) = (McM,)~1?
X Z q)aﬁ,in,ju eXp[“ik'(Ri - R‘J)] i
R.-R,
(10)
Here, M, is the mass of the xth atom and M, is the mass

of the vth atom. ®up ;s ;. is the force-constant matrix,
which can be expressed as



I®

62Ecoh (LOt)
6ua‘i,¢8Ug’j,, ’

Qaﬁ,in,ju = (11)
where Eco,(tot) is the total energy of the system. uq i
is the ath Cartesian component of the displacement of
the xkth atom in the ith unit cell, and ug ;, is the fth
Cartesian component of the displacement of the vth atom
in the jth unit cell.

Finally, the phonon frequencies w(k) are related to the
eigenvalues of D(k), given by

detlw?(k)L — D(k)| = 0. (12)

III. APPLICATION OF THE MANY-BODY
ALLOY HAMILTONIAN
TO THE Pd-H SYSTEM

In this section, we first determine the parameters of
the MBA Hamiltonian for the Pd-H system, based on
our ab initio results®® for the structure and cohesive
energy of bulk Pd and PdH. It should be noted that this
procedure does not allow free parameters. We apply this
Hamiltonian next to determine structural and bonding
properties of clean and hydrogen-covered Pd surfaces.

A. Construction of the MBA Hamiltonian

In the MBA Hamiltonian, each of the H-H, H-Pd, and
Pd-Pd interactions is characterized by a set of five param-
eters: &, €&, ¢, p, and ro (four of these parameters are
independent). The Pd-Pd interaction is obtained from
our previous ab initio calculation® of the cohesive energy
E.on as a function of the lattice constant a for bulk Pd.
We consider nearest-neighbor interactions only and ob-

|

rP4-
Beon (1) = ~{ Zu(PA)ER pucn x| ~2apan

T0,Pd-H
"Pd-H

+{ ZH(Pd)egpd_H exp [*ppdvﬂ (
70,Pd-H
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tain a simplified expression for the bulk cohesive energy,

Eeon(Pd bulk)

. 2
=— {Zbulk £0,pa-Pd

TPd-Pd
T0,Pd-Pd

I}
-)

Here, Zpux = 12 for the fcc structure and rg pg-pa =
a\/2/2 is the nearest-neighbor distance. The calculated
cohesive energy E.on of bulk Pd as a function of the lat-
tice constant a is given by the solid line in Fig. 1 and
compared to corresponding LDA results of Ref. 5. The
parameters used in Eq. (13) are given in Table 1.

The parameters for H-H interaction can be determined
in a similar way, by mapping the MBA Hamiltonian to
the ab initio calculation of hydrogen on a lattice. The
corresponding parameters are given in Table L.

To determine the parameters for the Pd-H interaction,
we apply the MBA Hamiltonian to bulk PdH. Consid-
ering the nearest-neighbor Pd-H, H-H, and Pd-Pd inter-
actions, we can obtain the cohesive energy of the PdH
crystal with NaCl structure as

X exp [—QQPd,Pd (

TPd-Pd
70,Pd-Pd

+Zbulk €¢pa-pa €XP [—p ( (13)

Ecoh = Ecoh(H) + Ecoh(Pd)- (14)

The binding energies of H and Pd in this structure are

given by

TH-H
T0,H-H

(15)

T0,H-H

and
r TP4-Pd 2
. Pd-H -
Econ(Pd) = "{ZPd(H)E(Z),Pd—H exp [—QQPd,H (To,Pd-H - 1)] + Zpa(PA)E] pa-pa eXP [—QQPd,Pd <_—To,pd-1>d - 1)]}
TP4d-H R TPd-Pd
+{Zpd(H)6§pd_H exp [—PPd,H (ro,Pd_H - 1)] + Zpa(Pd)eg py-pa €XP [—PPd,Pd (__ro,Pd-pd - 1)]} .

TABLE I. Interaction parameters used in the many-body alloy Hamiltonian for the Pd-H sys-

tem.

Interaction Jap Paps Tapo (R) efﬁ (eV) €ap (eV)
Pd-Pd 3.40 14.8 2.758 0.08376 1.2630
H-H 3.22 5.28 2.300 0.1601 0.9093
H-Pd 2.20 5.50 1.769 0.6794 2.5831
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FIG. 1. Cohesive energy changes AE.on = Fcon — Econyo

in bulk Pd and PdH as a function of the lattice constant a.
Values obtained using the MBA Hamiltonian for Pd (solid
line) and PdH (dashed line) are compared to LDA results of
Ref. 5 for the corresponding systems, given by e and o.

Here, Zpy(H) = 6 and Zp4(Pd) = 12 are the respective
numbers of H and Pd nearest neighbors of a Pd atom,
and Zy(Pd) = 6 and Zy(H) = 12 are the numbers of H
and Pd nearest neighbors of a H atom. 79 p4-un = a/2
and 7o pd-pd = av/2/2 are the Pd-H and Pd-Pd nearest-
neighbor distances and a is the lattice constant. The
values of &g p4-H, Ppd,H, 9Pd,H, and E{J%Pd—H have been de-
termined by reproducing LDA results of Ref. 5 for Feon
of bulk PdH and are given in Table I. The corresponding
results obtained with the MBA Hamiltonian are given by
the dashed line in Fig. 1, together with the LDA results
given by the data points. The good agreement between
results for the bulk systems based on the MBA method
and LDA calculations indicates that the model Hamilto-
nian has sufficient flexibility to describe energy changes
accurately.

B. Structural and energetic properties of clean
and H-covered Pd(001) and Pd(110) surfaces

In the preceding section, we have constructed the MBA
Hamiltonian and shown that it can reproduce the bulk
equilibrium properties very accurately. In this section,
we test its applicability to surfaces, specifically to the
calculation of surface energies, surface relaxations, and
adsorption energies on (001) and (110) surfaces of Pd.
Our results will be compared to experimental data and
to ab initio data of Refs. 3 and 5.

The surface energy of a clean Pd surface is related to
the cohesive energy of the bulk and of an n-layer slab by®

E, = 1[E.on(Pd slab) — nEeon(Pd bulk)]. (17)

We have assumed that the slab energy F.,,(Pd slab) and
the corresponding surface energy £, are per surface atom.
Using this equation together with Egs. (1) and (6), we
can easily determine the surface energy for a given Pd
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surface, and also the multilayer surface relaxations by
minimizing £.

Here, we have calculated the surface energy for Pd
slabs with both (001) and (110) surfaces. Our results
for the change of the surface energy AFE, corresponding
to a relaxation Ad;y of the topmost Pd interlayer dis-
tance are given in Fig. 2. The calculations for the (001)
and (110) surfaces of Pd are given by the solid lines in
Figs. 2(c) and 2(d), respectively. For the sake of simple
comparison with the LDA results of Ref. 5 [given by the
data points in Fig. 2(d)], these model calculations have
been performed for a three-layer Pd slab. Our results
indicate a surface contraction which increases with a de-
creasing coordination number of the surface atoms, in
quantitative agreement with the LDA data.

In principle, we can easily handle very thick slabs with
the MBA Hamiltonian and will concentrate on much
thicker slabs with n = 25 in our calculation. This slab
thickness is more than sufficient to guarantee that the
two slab surfaces do not interact and that the atoms in
the middle of the slab are in a truly bulk environment.

Our numerical results indicate that the surface energy
of Pd(110) (0.73 eV /atom) is much higher than that of
Pd(001) (0.48 eV /atom). As discussed in more detail in
Ref. 5, this can be tracked back to the narrowing of the
effective Pd 4d band width or an increasing number of
“dangling bonds” with decreasing coordination number.
Since precise experimental data for these surface energies
are not available, we will only compare our results with
recent LDA calculations.® For Pd(001), our surface en-
ergy value F;, = 0.48 eV /atom is very close to the LDA
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FIG. 2. Schematic side view of the (a) Pd(001) and (b)
Pd(110) surfaces showing the definitions of the hydrogen ad-
sorption height A and the interlayer spacings di2, d23, and
d3s4. Surface energy changes AFE, = E; — E, for clean and
H-covered (c) Pd(001) and (d) Pd(110) surfaces, as a func-
tion of the first interlayer spacing di2. Values obtained using
the MBA Hamiltonian for clean (solid line) and H-covered
(dashed line) surfaces are compared to the LDA results of
Ref. 5 for the corresponding systems, given by e and o.
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TABLE II. Relaxations at clean and hydrogen covered Pd surfaces.

Surface Ady2 (%) Adas (%) Adss (%) Reference

Pd(001) —-2.2 0.2 0.0 Present work

Pd(110) -5.2 0.7 —0.3 Present work
Pd(001) + p(1x1)H 4.0 0.7 0.0 Present work
Pd(110) + p(1x1)H 1.3 1.3 0.0 Present work

Pd(110) —6.0+2 1.042 Ref. 39

Pd(110) —5.1£1.5 2.9+1.5 Ref. 40
Pd(110) + (2x1)H —2.241.5 2.941.5 Ref. 40

result® of 0.49 eV /atom. Our value E; = 0.73 eV/atom
for a Pd(110) surface is significantly lower than the re-
ported LDA result of 1.80 eV /atom. The large discrep-
ancy between these latter results is possibly due to a less
adequate basis set and the neglect of surface relaxations
in the LDA calculation.

The values in columns 2-4 of Table II indicate a
damped oscillatory behavior for the surface relaxations.
These oscillations occur as a general phenomenon which
has been observed38740 and calculated®®4! in many sys-
tems. We also find the surface relaxations to be more
pronounced on the more open (110) surface than on the
close-packed (001) surface, in agreement with the gen-
eral observation that increasing relaxations correspond
to larger surface energies. As seen in Table II, our cal-
culated surface relaxations are in gratifying agreement
with both experimental data®®%® and LDA results.54!
This good agreement confirms that the MBA Hamilto-
nian can accurately describe the structure and energy
changes of clean Pd(001) and Pd(110) surfaces.

Finally, we use the MBA Hamiltonian to determine
the binding energy of hydrogen in different adsorption
sites on the Pd(001) and Pd(110) surfaces. These calcu-
lations yield the preferential adsorption site and adsorp-
tion height, both of which are accessible to experimental
verification. In order to simplify the comparison with the
LDA calculations of Refs. 3 and 5, we performed all cal-
culations for a three-layer Pd slab which is covered by H
on both sides. We find the adsorption energy of H on Pd
to be typically of the order F.q & —3 eV. Since the bind-
ing energy of a Ha molecule 1s only D, = 4.75 eV, the
dissociation probability of a Ho molecule approaching the
Pd surface is high. For this reason, we limit our investi-
gations to atomic hydrogen on Pd(001) and Pd(110).

The equilibrium structure of hydrogen-covered surfaces
can be determined in the same spirit as the calculation for
the clean surfaces described above. Our results for the
surface energies and multilayer relaxations are summa-
rized in Fig. 2 and Table I1. The hydrogen atoms are as-
sumed to occupy the equilibrium sites during the surface
relaxation. The calculated changes of the surface energy
of hydrogen covered Pd(001) and Pd(110) surfaces are
given by the dashed lines in Figs. 2(c) and 2(d), respec-
tively. For the sake of simple comparison with the LDA
results of Ref. 5 [given by the data points in Fig. 2(d)],
these model calculations have been performed for a three-
layer Pd slab. Our results indicate an expansion of the
hydrogen-covered surfaces, in agreement with the LDA

data. The reversal of surface contraction obtained for
clean surfaces can be explained by the saturation of Pd
dangling bonds by H atoms.

In Fig. 3, we display the adsorption energy of H on
Pd(001) as a function of the adsorption height A for the
on-top site, the bridge site, and the hollow site. Results

2.0 ( b) .
~ 15 ¢ n:_- K
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3 Y ’ -
~ 1.0 + \\\ ‘9_,' b
8 . e
% @ ‘=@
0.5 -\kA ° .
0.0 *—4“/ L . L
-05 00 05 1.0 1.5 2.0
h ()
FIG. 3. (a) Schematic top view of the Pd(001) surface and

the assignment of adsorption sites: hollow (x), bridge (o), and
on-top (O). (b) Adsorption energy changes AFE.q = Faq —
E,q,0 (with respect to the equilibrium adsorption energy) as
a function of the hydrogen adsorption height A on Pd(001).
Results based on the MBA Hamiltonian for the hollow site
(solid line), the bridge site (dashed line), and the on-top site
(dotted line) are compared to LDA results of Refs. 3 and 5,
given by the data points.
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obtained using the MBA Hamiltonian, shown by lines,
are compared to LDA data of Ref. 3, given by the data
points. As discussed above, we represent the substrate
by the same three-layer Pd slab as used in the LDA cal-
culation. Since it is only energy differences which are
relevant for the preferential adsorption sites and the vi-
bration frequencies, we show adsorption energy changes
AF.g = Euq — Eaq o with respect to the adsorption en-
ergy of H in the equilibrium site in Fig. 3(b). We find the
fourfold hollow site to be the equilibrium site on Pd(001),
in agreement with the experimental data of Ref. 8 and the
LDA results of Ref. 3. Also the very small equilibrium
adsorption height hg = 0.18 A above the first Pd layer
is in good agreement with the LDA value® of 0.24 A and
the experimental result'3 of 0.30 A. These small adsorp-
tion heights result from the very small atomic radius of
hydrogen. More important, the MBA Hamiltonian gives
H-Pd interaction potentials (and consequently vibration
frequencies) in close agreement with the LDA data.

FIG.4. (a)Schematic top view of the Pd(110) surface and
the assignment of adsorption sites: hollow (x), long-bridge
(e), short-bridge (o), and on-top (O). (b) Adsorption energy
changes AFE.q = Eaq — Faq,0 (with respect to the equilibrium
adsorption energy) as a function of the hydrogen adsorption
height k on Pd(110). Results based on the MBA Hamiltonian
for the hollow site (solid line), the long-bridge and the short-
bridge sites (dashed line), and the on-top site (dotted line) are
compared to LDA results of Ref. 5, given by the data points.
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Adsorption energies for H on Pd(110) are shown in
Fig. 4 for the on-top, the short-bridge, the long-bridge,
and the hollow site. In analogy to Fig. 3, the continuous
lines represent the MBA Hamiltonian results, and the
discrete data points show LDA values of Ref. 5. Also in
this case, the LDA and MBA Hamiltonian calculations
have been performed for a three-layer Pd slab. Similar
to the results for the (001) surface, the MBA potentials
represent energy differences and adsorption potentials,
which are in remarkably good agreement with the LDA
data.

Both the MBA technique and LDA predict the long-
bridge site to be the most favored among the adsorption
sites considered here. Our calculation indicates that in
this site, the equilibrium hydrogen adsorption height is
only hg = 0.09 A above the topmost Pd layer. Recent
low-energy electron diffraction?® and He scattering®4?
experiments suggest that the preferential H adsorption
site is the threefold coordinated site in the troughs on the
Pd(110) surface. In this site, the separation between the
hydrogen atom and the two nearest neighbors in the top-
most Pd layer, as well as the closest Pd atom in the sec-
ond layer, is 2 A. The mutually repulsive interaction be-
tween nearest-neighbor hydrogen atoms stabilizes a zig-
zag adsorption pattern in the troughs on the surface.’
Results based on the MBA Hamiltonian indicate that
this adsorption geometry is slightly energetically disfa-
vored when compared to the preferential long-bridge site.
While the MBA Hamiltonian clearly cannot resolve such
minute energy differences, we find that the predicted H-
Pd interaction potentials are in remarkably good agree-
ment with ab initio calculations and experimental data
in view of the simplicity of the approach.

IV. PHONON STRUCTURE IN THE BULK
AND AT THE SURFACE OF Pd-H SYSTEMS

In this section, we present our phonon calculation re-
sults for bulk Pd and PdH, as well as the clean and
H-covered (001) and (110) surfaces of Pd. As outlined
in Sec. II, the phonon dispersion relations can be de-
termined directly by diagonalizing the dynamical ma-
trix Dqg,cv(k), which is basically a Fourier-transformed
force-constant matrix. According to Eq. (11), the force-
constant matrix can be determined numerically by calcu-
lating total energy differences with respect to the atomic
displacements. This can be done efficiently using the
MBA Hamiltonian which, as shown above, gives reliable
potential energies near the equilibrium structure. It is
worthwhile to note that the force-constant matrix ac-
counts for effective second- and third-neighbor interac-
tions. This is a consequence of the many-body nature of
the MBA Hamiltonian which correctly describes the in-
direct interaction between two atoms and its mediation
through a third atom neighboring the two sites.

In Fig. 5(a), we compare our phonon calculations for
bulk fcc Pd to measured phonon spectra along the high
symmetry lines. The experimental data?3 have been ob-
tained using inelastic neutron scattering. As shown in
this figure, our calculation is in quite good agreement
with the experiment throughout the Brillouin zone. Since
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FIG. 5. Phonon dispersion relations for (a) bulk Pd and
(b) PdH. Frequencies calculated using the MBA Hamiltonian
are given by the solid lines. The experimental data points of
Ref. 43 for bulk Pd are given by (+).

our Hamiltonian is based on LDA calculations for static
properties of Pd, and does not contain any adjustable
parameters, the good agreement indicates that the MBA
Hamiltonian also correctly describes the dynamical prop-
erties of this system.

The results of our similar calculation for bulk PdH
are shown in Fig. 5(b). The net effect of hydrogen
on the phonon spectrum is a softening on the acous-
tic branches. This is partly caused by a 6% increase
of the lattice constant upon hydrogen uptake, shown in
Fig. 1, from 3.89 A in Pd to 4.12 A in PdH. Based on
the analysis of our results, we find that the presence
of hydrogen has a strong effect on the force-constant
matrix ®. The force constants describing the restor-
ing forces acting on a Pd atom displaced along a high—
symmetry direction are reduced from ¢ = 10.6 eV/.IDX2
in bulk Pd to only 6.8 eV/A? in PdH. The effect of
the presence of hydrogen on the bulk modulus is com-
parably small. We obtain B = 2.03 x 10'? dyn/cm?
in bulk Pd which compares well with the experimental
value** B = 1.81 x 10!2 dyn/cm? and the LDA value of
2.15 x 10'2 dyn/cm?. The corresponding value in PdH is
only 3% smaller, B = 1.98 x 10'? dyn/cm?, which is in
fair agreement with the LDA result 1.95 x 10!? dyn/cm?
of Ref. 5.

Since our main interest is the effect of hydrogen on the
Pd modes, we do not include the hydrogen-derived opti-
cal modes in the figure. These modes have a very high
frequency and are well separated from the acoustic Pd-
derived modes due to the mass disparity of these atoms.
While the hydrogen atoms can be basically thought of as
Einstein oscillators, the weak coupling between hydrogen
atoms broadens the optical states to a ~ 3 THz broad-
band. Since the H-H nearest-neighbor distance in PdH
ro.u-H = 2.06 A is much larger than the H-H interaction
range (&~ 1 A), we have neglected the direct H-H interac-
tion in our calculation, but have accounted for the domi-
nant indirect interaction mediated by Pd atoms. A closer
analysis of the optical bands reveals that two out of the
three bands show no dispersion and represent Einstein
modes of hydrogen atoms with no direct coupling. The
above-mentioned dispersion of the third branch reflects
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the degree of Pd-mediated indirect interaction between
H atoms, which is almost equally strong for the first and
second neighbors. These effects in the optical band can
also be seen in the measured phonon dispersion relations
of the related systems PdDg ¢3 (Ref. 45) and PdTy 7.%¢

The calculated phonon spectra for the Pd(100) and
Pd(110) surfaces are shown in Figs. 6 and 7, respec-
tively. These surfaces are represented by relaxed 25-layer
Pd slabs. Phonon spectra of the clean (001) and (110)
Pd surfaces, shown in (a), are compared to results for
hydrogen-covered surfaces, shown in (b). In order to dis-
tinguish surface from bulk states, we are showing phonon
bands of bulk Pd in Figs. 6(c) and 7(c). For the sake of
simple comparison, the bulk bands are projected onto
the same two-dimensional Brillouin zones in (c) as used
in (a) and (b).*” For both surfaces, our calculations indi-
cate the presence of surface modes which appear either
in the bulk band gaps or are split off from the bulk band
edges.

Based on the comparison of phonon spectra for
Pd(001) in Figs. 6(a) and 6(c), the presence of the surface
introduces a soft Rayleigh mode*® S;, which is substan-
tially softer than any bulk mode in the Brillouin zone.
At the M point, this mode corresponds to vibrations of
surface atoms perpendicular to the surface. The origin of
the mode softening is a decreased interlayer interaction
at the surface, which is only partly compensated by the
surface contraction. The analysis of our results indicates
that the zone-edge frequency of the S; mode increases
from 3.72 THz for the unrelaxed surface to 4.11 THz for
the relaxed surface. A second surface mode S4, which
is barely split from the bulk band at M, is a transver-
sal mode corresponding to in-plane vibrations. In addi-
tion to these soft modes, the surface introduces a phonon
mode Sg with v &~ 6 THz in the gap of the bulk spectrum
near X . This mode corresponds to in-plane vibrations of
topmost layer atoms, coupled to out-of-plane vibrations
of second layer atoms.

The phonon spectrum of a hydrogen-covered Pd(001)
surface is shown in Fig. 6(b). We have assumed a mono-
layer coverage corresponding to occupying all hollow sites
by H atoms. The Pd surface has been again represented
by a 25-layer slab. Similar to the bulk Pd-H system, we
are mainly interested in the effect of hydrogen on the
Pd surface modes, and do not show the H-derived high-
frequency optical modes which are well separated from
the Pd modes. The most striking change in comparison
to the H-free surface shown in (a) is a massive softening of
the Rayleigh mode. At M, the frequency of the S; mode
decreases from 4.11 to 2.77 THz due to hydrogen adsorp-
tion. On the other hand, hydrogen does harden other
modes, such as the bulk band-gap mode at v =~ 6 THzg,
which has been discussed above. A detailed analysis of
the eigenstates shows that surface phonon modes with a
vibration amplitude perpendicular to the surface experi-
ence a large amount of softening. Other surface modes
with amplitudes restricted to the surface layer, such as
the S¢ mode, experience a hardening due to the restricted
movement in presence of hydrogen atoms. Our eigenvec-
tor analysis also indicates that hydrogen adsorption also
increases the confinement of surface modes to the few
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FIG. 6.

(a) Calculated phonon dispersion relations for a clean 25-layer Pd slab with a (001) surface. (b) Corresponding

results for a H-covered Pd slab (monolayer coverage, hollow site). (c) Bulk phonon dispersion relations of Fig. 5(a), projected
onto the two-dimensional surface Brillouin zone used in (a) and (b).

topmost layers and shortens the penetration depth into
the bulk.

In Fig. 7, we compare the phonon spectra of clean and
hydrogen-covered Pd(110) surfaces to bulk phonon spec-
tra. The Pd surface has been again represented by a
25-layer slab. A comparison of our calculated phonon
spectra for clean Pd(110) to inelastic He scattering data
of Ref. 15 is shown in Fig. 7(a). The softest surface mode
is the Rayleigh mode Sy. Our calculation reproduces the
general features of this mode quite well, but our frequen-
cies are & 10% higher than the observed data. While
we are aware that our parametrized Hamiltonian may
not describe the detailed changes of metal bonding at
surfaces to a very high accuracy, we cannot exclude the
possibility of a slight hydrogen contamination of the Pd
sample used in Ref. 15, which is very hard to detect and
would also soften the surface Rayleigh mode.

Since Pd(110) shows the largest surface contraction,
the softest surface phonon modes are quite close to the
lowest lying bulk bands throughout the surface Brillouin
zone. The strongest softening can be observed at the Y

point, where we obtain three surface modes*® Sy, S;, and
F well below the bulk band. Our analysis of the eigen-
states indicates that these modes correspond to in-plane
(along the surface z and y directions) and out-of-plane
(along the z direction) vibrations of the topmost layer.
The lowest mode is an in-plane mode with an amplitude
along the y direction. Similar to the (001) surface, the
surface contraction generally hardens the surface phonon
modes. Qur calculation shows that at the Y point, be-
cause of the relaxation, the lowest surface modes with
topmost layer amplitudes along the z, y, and z direc-
tions are shifted from 2.36, 2.29, and 2.77 to 2.71, 2.23,
and 2.94 THz, respectively.

From the comparison of Figs. 7(a) and 7(c), we see
that the presence of the (110) surface introduces several
other vibration modes beyond the Rayleigh mode. The
bulk phonon spectrum, shown in Fig. 7(c), contains gaps
near X, at v~ 5.5 THz, and near Y, at v = 4.5 THz. On
Pd(110), three surface states appear in both gaps. The
5.4-THz gap mode at X corresponds to topmost layer
atoms vibrating along the surface z direction, and the

8.00

4.00

v(THz)

FIG. 7.

(a) Calculated phonon dispersion relations for a clean 25-layer Pd slab with a (110) surface. The experimental data

of Ref. 15 are given by e. (b) Corresponding results for a H-covered Pd slab (monolayer coverage, long-bridge site). (c) Bulk
phonon dispersion relations of Fig. 5(a), projected onto the two-dimensional surface Brillouin zone used in (a) and (b).
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4.7-THz gap mode at ¥ corresponds to an analogous vi-
bration along the surface y direction. The surface also
introduces high-frequency states slightly above the top of
the bulk bands, well visible at the X and Y points. These
modes have considerable amplitudes deep into the bulk,
and correspond to alternating in-plane and out-of-plane
vibrations on the individual layers.

Calculated surface phonon dispersion relations for the
H-covered Pd(110) surface are shown in Fig. 7(b). In
analogy to the Pd(001) surface calculation, we have as-
sumed a monolayer coverage corresponding to the occu-
pation of all long-bridge sites (the equilibrium adsorp-
tion site) by H. As for bulk PdH and H/Pd(001), we do
not show the H-derived high-frequency optical modes for
H/Pd(110) in (c¢). The general trends discussed above
for the effect of hydrogen on the surface modes of the
Pd(001) surface hold also for the (110) surface. Specif-
ically, we observe a softening of surface modes involv-
ing an out-of-plane motion of topmost layer atoms, and
a hardening of modes involving an in-plane vibration of
surface atoms along the z direction at X and the y direc-
tion at Y. Other vibration modes experience very little
change.

Hydrogen-induced bonding changes at the Pd(110)
surface can be understood by investigating the three low-
est phonon modes Si, Su, and E at the Y point. The S;
mode, which involves in-plane vibrations of the topmost
layer along the surface y direction and out-of-plane vi-
brations of the second layer, has been pushed up in fre-
quency from 2.23 THz for the clean surface to 2.71 THz
for the H-covered surface. The main reason for this hard-
ening is a restricted freedom of motion of topmost layer
Pd atoms due to hydrogen atoms adsorbed in the long-
bridge site. The S mode, corresponding to a vibration of
topmost layer Pd atoms along the close-packed surface «
direction, has been softened by the presence of hydrogen
from 2.71 THz for the clean surface to 2.46 THz for the
H-covered surface. Finally, the £ mode, corresponding
to out-of-plane vibrations of the topmost layer, experi-
ences the strongest softening from 2.94 THz for the clean
surface to 2.56 THz for the H-covered surface.

As compared to the (001) surface, phonon modes at the
Pd(110) surface are less affected by hydrogen adsorption.
This is especially true for the softening of the Rayleigh
mode. This last conclusion may not hold in case of an
adsorption in the quasithreefold site discussed in Sec. I11.
In that case, we would expect an increasing Rayleigh
mode softening with increasing hydrogen coverage, which
has been observed at the ¥ point on the related Ni(110)
surface in high-resolution EELS experiments.®°

From our calculation, we see that hydrogen adsorption
has a profound effect on both the equilibrium structure
and dynamical properties of Pd surfaces. These two ef-
fects are closely related. The presence of hydrogen ad-
sorbates reverses the topmost layer contraction, and the
large anharmonicity of the interlayer interactions causes
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the effective interlayer force constant to decrease with in-
creasing interlayer distance. This results in a softening of
the Rayleigh surface phonon mode with an out-of-plane
amplitude in the topmost layer. Since the hydrogen-
induced expansion is larger on the more densely packed
(001) surface than on the (110) surface, the Rayleigh
mode softening is also stronger on the Pd(001) surface.

At both Pd(001) and Pd(110) surfaces, the equilib-
rium adsorption height of hydrogen is close to zero, i.e.,
hydrogen atoms are buried inside the topmost Pd layer,
where they affect the effective Pd-Pd force constants
most. There is very little surface stress associated with
this adsorption site, due to the small size of the H atoms.
Surface phonon modes with in-plane vibration ampli-
tudes are nearly independent of surface relaxations, but
are affected by the presence of hydrogen. This latter ef-
fect results from the hydrogen-induced change of Pd-Pd
force constants, and also the restricted freedom of motion
due to the extra adsorbed atoms which hardens some of
these modes.

V. CONCLUSIONS

We have developed a many-body alloy Hamiltonian
which describes efficiently total energy changes in alloys
such as the Pd-H system. All parameters have been
obtained from ab initio density-functional calculations,
with no adjustable parameters for surface properties. We
tested this Hamiltonian first and calculated the equilib-
rium structure and binding energy of bulk Pd and PdH,
as well as H-free and H-covered Pd(001) and Pd(110)
surfaces. We found our results to be in good agreement
with experimental results where available.

Next, we studied the effect of hydrogen on the vibra-
tion spectra of bulk Pd and the Pd(001) and Pd(110)
surfaces, by constructing the dynamical matrix based on
the MBA Hamiltonian. We find that in the bulk sys-
tems, hydrogen softens the Pd vibration modes, as seen
in the comparison of bulk Pd and PdH phonon spec-
tra. The results for the clean and H-covered (001) and
(110) surfaces of Pd are not as clearcut. We find the
most pronounced effect of hydrogen coverage to be the
softening of the surface Rayleigh mode with out-of-plane
vibration amplitudes on the topmost layer.” Other sur-
face modes, such as in-plane vibrations of the topmost
layer, are affected to a lesser degree or occur at higher
vibration frequencies in the presence of hydrogen.
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