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The isolated neutral C60 molecule is characterized by a triply degenerate lowest unoccupied level of 
t I. symmetry. In the alkali-metal-intercalated C60 crystals, this state is partially filled and is thus sub­
ject to a Jahn-Teller distortion. To examine the relation between this effect and the superconductivity 
of these crystals, we first study the stable atomic distortions as a function of the occupancy of the t I. 
state, stressing the similarity between this problem and the single vacancy in silicon. We then show 
that the on-ball electron-lattice coupling is not strong enough for C60 to behave as a negative-U sys­
tem. We finally relate the dimensionless electron-phonon coupling constant A. to the magnitude of the 
Jahn-Teller energies. 

An intriguing property of the alkali-metal-intercalated 
fullerite compounds A3C60 is that they are superconduct­
ing with a transition temperature which can exceed 30 
K.I,2 Recent calculations 3 - 6 have shown that the elec­
tronic properties of these materials are dominated by in­
traball interactions (j.e., within each C60 molecule), the 
interball coupling being more than I order of magnitude 
smaller. Further, alkali-metal intercalation is well de­
scribed by electron donation to the C60 molecule. The first 
step in understanding the origin of the superconductivity 
is thus to study the electron-lattice coupling of the isolated 
negatively charged C60 molecule. 7 This coupling is 
strongly influenced by the fact that its ground state is or­
bitally degenerate, leading to the existence of a Jahn­
Teller effect. The aim of the present work is to examine 
this Jahn-Teller coupling in some detail and evaluate its 
role in the superconductivity of the A 3C60 compounds. 
We first determine the possible stable atomic distortions. 
We then determine the Jahn-Teller energies for C60 and 
calculate the contribution of the Jahn-Teller terms to the 
dimensionless electron-phonon coupling constant A.. We 
also show that the Jahn-Teller problem can be cast in the 
same form as for the single vacancy in silicon. For the 
relevant case of a half-filled triply degenerate state, we ob­
tain results which differ qualitatively from the current in­
terpretation of the negative vacancy,8 confirming the re­
cent analysis of Anderson, Ham, and Grossmann. 9 

The electronic structure of negatively charged C60 is 
characterized by the fact that the upper partially filled 
level is triply degenerate and of t lu symmetry. 3 -6 In the 
A 3C60 compounds, this level gives rise to a weakly dispers­
ing band due to the small interball interactions. This 
band is partially filled with three electrons per C60 ball, so 
that the relevant problem to study is the isolated C60 mol­
ecule with three electrons in the t lu state. For such a par­
tially filled orbitally degenerate state, there will be a 
linear coupling to the on-ball distortion modes. These 
latter can be classified by symmetry. The only modes 
which couple within the t 1 u manifold are those contained 

in the symmetric product (t lu X t lu)s, namely, Ag (nonde­
generate fully symmetric modes) and Hg (fivefold-degen­
erate distortion modes). It turns out that the Ag contribu­
tion will be small. 

In the following, we shall be concerned mainly with the 
Hg modes whose amplitude we label Qp,a' Here, p is the 
mode index (there are eight such modes for C60) and 
a = 8, E,~, '1, ( is the degeneracy index. In the limit of 
linear electron-lattice coupling one can treat each five­
fold-degenerate set of modes (i.e., each p value) indepen­
dently. For one such mode, symmetry considerations lead 
to the following Jahn-Teller coupling 3 x 3 matrix: 

h V =-p 
p 2 

o Qp{ Qpq 

+hp Qp{ 0 Qp~ 

Qpq Qp~ 0 

o 0 

- QplJ - ..J3QpE 0 

o 2QpIJ 

We have deliberately chosen the notation to be the same 
as for the single vacancy in Si,lO which, in Td symmetry, 
corresponds to a T2 electronic state coupled to modes of E 
and T symmetry. This can be directly applied to C60 by 
considering that the E and T modes become degenerate, 
leading to a fivefold-degenerate Hg mode, and imposing 
one relation between the two electron-lattice parameters, 
namely, h = t..J3h =1. This is analogous to the case of 
p-like electronic states coupling to d-like distortions. 

The existence of this Jahn-Teller coupling leads to ener­
gy surfaces which can be calculated by adding to the 
linear terms (I) an elastic term of the form 

with Kp£ =KpT=K for C60. 

To determine the stable distortions one must minimize 
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the total energy resulting from (I) and (2). This energy 
takes the form 

3 

E 101 == l: niA.i(Qpa)+Lp(Qpa). 
;=1) 

The A.i are the eigenvalues of (I) and the ni are the occu­
pation numbers. The solution to this problem is well 
known for ne = 1:i ni equal to I or 2, i.e., when only the 
lowest state is filled. II Here we want to consider also the 
case ne ... 3 which is relevant for A 3C60. For this we have 
generalized an approach to this problem given by Opik 
and Pryce II for the case ne - I. 

We follow exactly the same lines (details can be found 
in Ref. 10) and summarize here only the main steps in the 
derivation. We first write the ith normalized eigenfunc­
tion of the matrix (I) in the form 

m 

where the "'~ are the basis states. The eigenvalues A.i are 
solutions of 

AjQim == l: Vn1m'Qim', (5) 
m' 

the Vmm' being the elements of matrix (I). This allows 
one to express A.i as 

A.i = l: aim Vmm'aim' . 
nl,n,' 

We insert this last expression into E 101 given by Eq. (3) 
and minimize E 101 with respect to the distortion coordi­
nates Qpa. Noticing that each A.i is already an extremum 
with respect to any variation of the aim, we get the set of 
equations 

~EQIOI =0 = ~ ni [ l: ,aim a:Qmm' aim') + KpaQpa . (7) 
U pa ,m~m U pa 

The Vmm, are linear in the lattice coordinates so that their 
derivatives are numbers. Equation (7) can then be used to 
express the Qpa in terms of the aim. If we now insert these 
values of the Qpa into the Vmm, of Eq. (5), we get an equa­
tion involving only A.i and the aim. After some manipula­
tioris (essentially generalizing those detailed in Ref. 10 for 
the case n" = I) we get the following set of equations, valid 
for any level occupancy: 

ajm [1..+ 2::
p 
;ni(3ai~' -1)+ ~:: (nj - ;niai7n ) ] ==0. 

(8) 
These equations reduce to the standard Opik and Pryce 
result for ne = I or 2 where only the lowest A.i is occupied. 
In the present situation, we have ni ==2, I, and 0 for the 
lowest, intermediate, and upper states. We must analyze 
all possible solutions of Eq. (8), considering the possibility 
that either ajnr is zero or nonzero. The number of possibil­
ities is larger than those investigated in Ref. 10. However, 
the result we obtain is surprisingly simple: We find that 
the only stable distortions are either pure tetragonal (i.e., 
having only the Qo, Q. modes being nonzero) or pure tri­
gonal (having only the Q~, Q~, and Qt; modes being 
nonzero). Which of the two situations is the stable one 

depends upon the corresponding lahn-Teller gains in en­
ergy. These can be written as /(ne )Ep for tetragonal dis­
tortions and /(ne)Tp for trigonal modes. The function 
/(ne) takes the values I, 4, and 3 for ne == I or 5, 2 or 4, 
and 3, respectively. 12 The units of lahn-Teller energy are 

[2 
Hp 

Ep=TK' 
Hp 

Only pure distortions occur (tetragonal for Ep> Tp , 

trigonal for Ep < Tp) irrespective of the value taken by ne. 
For the vacancy in silicon this result agrees with Watkins' 
observations of a pure tetragonal distortion for the posi­
tive state V + (ne = 1).8.10 However, for the negative state 
V - (ne = 3), it contradicts his simple explanation for the 
observed mixed (tetragonal + trigonal) distortion since 
this analysis predicts only pure modes of distortion. Our 
results confirm the recent conclusions of Anderson, Ham, 
and Grossmann 9 that more complex effects like multiplet 
splitting must be included to explain the observed mixed 
distortion. 

Coming back to the C60 problem, the fact that IT 
=h.Ji/2 and KH =KT =K implies that Ep =Tp, i.e., 
that there is an ext~a degeneracy involving the five distor­
tion coordinates. The origin and consequences of such a 
degeneracy can be found in the work of O'Brien. 13 

Now that we have the value of the lahn-Teller energy, 
which is /(ne )Ep for the C60 molecule, we can answer the 
question whether it behaves as a positive- or negative-U 
system. The effective electron-electron interaction U is 
defined, in terms of total energies E 101. as 

This can be decomposed as an electronic contribution U el 

plus a distortion contribution Ud. The latter is simply 
given in terms of the /(ne ) and, for ne = 3, turns out to be 

Ud = - [/(4)+/(2) -2/0)]l:Ep 
p 

(II) 

We have calculated this contribution in a tight-binding 
description for the electronic states and their coupling to 
the lattice and a Keating model for the vibrational eigen­
modes. 14 The results, confirmed by a local-density-ap­
proximation (LDA) calculation for some modes, give for 
Ud a value of -0.05 eV. This is much lower than Ue , 

which, for the ball, should be of order 0.5 eV. We thus do 
not expect a negative-U behavior for the isolated C60 to 
arise from the lahn-Teller effect. There is also a contri­
bution of the Ag symmetric modes to Ud which we found 
to be too small (-0.02 eV) to modify this conclusion. 

Let us finally work out the relation between the lahn­
Teller stabilization energy and the dimensionless elec­
tron-phonon coupling constant A. occurring in the theory 
of superconductivity. We use a standard expression for 
1..,15 
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where Kp.q is the force constant for the pth phonon mode 
of wave vector q, Vkk' is the corresponding electron­
phonon matrix element between electronic states of wave 
vectors k and k'. The 0 functions ensure that the sums are 
restricted to the Fermi surface. N(O) is the total density 
of states per spin and the sums do not include spin. The 
electronic states at the Fermi level are essentially built 
from the three t lu states of the ball and we can write them 
in the Bloch form 

where we consider a fcc lattice with one C60 ball per unit 
cell, R defines the cell position, v runs over the three states 
per ball, and N is the number of C60 balls in the crystal. If 
we neglect the interball electron-lattice coupling, it is easy 

v,v 

Using the fact that (I/N)};.k C:' (k)Cv,(k)O(Ed is the 
partial density of states nvv'(O) per C60 at the Fermi level, 
this can be rewritten 

A =_(2 ) 1:-1-1: Voo'(P)vOtvi(p)*nvV).(O)nviAO) , 
n 0 p 2Kp v.v' 

VA. vA. 

(17) 

where n(O) is now the density of states per spin and per 
C60. For the fcc crystals the local symmetry is such that 
nvv'(O) == t n(O)Ovv', i.e., A takes the form 

( ~ TrV;a 
A=2n 0)~-1-8-' 

p,a Kp 
(18) 

Vpa being the matrix obtained by taking the derivative of 
(I) with respect to the mode amplitude Qpa. From the de-
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to show that Vkk' reduces to 

Vkk·=1:.C:' (k)cAk') (~1:ei(k'-k)RVR:~(P,q»), 
V,v R 

(14) 

where VR~ is the intra ball coupling matrix. For the one­
phonon mode with wave vector q this term takes the form 
(l/.JN)eiqRVfj; and when inserted in (I4), leads to the 
condition k' = k - q. We thus get 

Vk,k-q= ~1:,voo'(p)C:'(k)Cv·(k-q). (IS) 
vN V,v 

We now proceed to calculate A by inserting this form of 
Vk,k-q into (I2) and also considering that the dispersion 
in the phonon modes can be neglected, i.e., that Kp,q is in­
dependent of q. We then obtain 

I 

tailed form of (1), one can express (I8) as 

A=2n(0) ( ~ fEp) , (19) 

which directly relates the distortion mode contribution to 
A and their total Jahn-Teller energy 3};.pEp in the n .. =3 
situation. Detailed calculations, described in Ref. 14, give 
a total contribution A -0.6 with a reasonable density of 
states of n(0)=15 eV- I , which is the correct order of 
magnitude for explaining the observed values of Te , 

In conclusion, we have studied the Jahn-Teller distor­
tions of the C60 molecule as a function of the occupancy of 
its last filled electronic state. We have derived a general 
expression, also valid for the vacancy in silicon, showing 
that only pure distortions are involved. Our calculation 
leads us to conclude that C60 is not a negative-U system. 
Finally, we have established a sum rule relating the part 
of A arising from the distortion modes to the total Jahn­
Teller energy. 
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