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Abstract. We have studied the low frequency vibrational 
modes and the structural rigidity of long graphitic car- 
bon tubules consisting of 100, 200, and 400 atoms. Our 
calculations have been performed using an empirical 
Keating Hamiltonian with parameters determined from 
first principles. We have found the "beam bending" mode 
to be one of the softest modes in these structures. The 
corresponding beam rigity of a "bucky  tube" is com- 
pared to an found to exceed the highest values found in 
presently available materials. 

PACS: 36.40. +d;  81.20.Sh 

The successful synthesis [ 1] of macroscopic quantities of 
C60 clusters with a fascinating hollow "buckyball" struc- 
ture [2] has ignited the interest of the scientific commu- 
nity in these and similar structures to an unprecedented 
degree. More recently, successful synthesis and identifi- 
cation of helical microtubules of graphitic carbon has 
been reported [3]. These graphite whiskers or "bucky 
tubes" are topological relatives of the "buckyball" [4] 
and might have been synthesized in direct current arc in 
inert gas already in the lat 50's [5]. Most interest in "bucky 
tubes" has concentrated on their electronic properties 
which can range from metallic to insulating [6]. In this 
paper, we present the first study of the mechanical prop- 
erties of these structures. We show that these structures 
may be the finest and toughest fibers presently available, 
as was suggested recently [7]. 

We focus our study on the low frequency vibrational 
eigen :modes of "bucky tubes" consisting of 100, 200, and 
400 carbon atoms which reflect the rigidity of these struc- 
tures. Among the man3, possible isomers [8], we con- 
sider those which can be generated by splitting the C60 
"buckyball" into equal halves, and connecting the two 
"bucky caps" by a graphitic cylinder of variable length. 
All carbon atoms in the structure are three-fold coordi- 
nated. The "bucky tubes", like all members of the ful- 

lerene family, consist of a varying number of hexagonal 
carbon rings (distributed across the caps and the cylinder) 
and of twelve pentagons (on the caps). The equilibrium 
structure of a "bucky tube" consisting of 200 atoms is 
shown in Fig. la. 

In order to determine the structural rigidity and the 
vibrational eigen modes of such a complex structure, we 
use an elastic model with central and angular forces for 
the nearest neighbor bonds. Such models are currently 
widely used to describe properties of covalently bonded 
solids with directional bonding [9-11]. In the present 
study, we will use the Keating potential [9] which is at- 
tractive due to its simple form and its successful appli- 
cation to complex structures such as the C60 solid [12] 
and amorphous silicon [ 13]. 

The Keating potential V x describes potential energy 
changes with respect to a relaxed reference state, and 
consists of a bond stretching and a bond bending term. 
The bond stretching term is a central nearest-neighbor 
two-body potential. The bond bending part of the po- 
tential is a three-body interaction term which is sensitive 
to changes of the angle between nearest-neighbor bonds. 

Ffg 1 

Fig. la, b. Schematic view of a "bucky tube" consisting of 200 
carbon atoms, a Equilibrium geometry, b Geometry of the low 
frequency "beam bending" mode 
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The Keating potential is given by 

Vx:=½~ ~ ( ru ' ru- IR, , - I=)  = 

<,,+> [ao[ 
i < j  

(r e- r u - R u • Rik) 2 

+1, 8 Z IRij[ IRis! ( i , j , k )  
j < k  

(1) 

The first term contains a summation over nearest neigh- 
bor pairs and the second term a summation over nearest 
neighbor triplets (where the vertex i is the nearest neigh- 
bor o f j  and k). Ru(ru) denotes the bond vector between 
atoms i and j before (after) the distortion. In graphite, 
all nearest neighbor bonds have the same equilibrium 
length I Ru[ = R. In graphite, the angle between nearest 
neighbor bonds with a common vertex atom is 120 °, so 
that R u • Ri~ = - 1 R 2. 

We determined the force constants e and B in the 
Keating potential using ab initio local density approxi- 
mation (LDA) [14] total energy calculations for specific 
distortion modes of graphite. As in our former total 
energy calculation of graphite [15], we used first-prin- 
ciples pseudopotentials [16], a Gaussian orbital basis, 
and an energy cutoff of 49 Ry in the Fourier expansion 
of the charge density. 

We have considered three kinds of displacement 
geometries which correspond to the eigenvectors of dif- 
ferent vibrational modes at the Brillouin zone center 
[15, 17]. The first geometry results from E292 mode dis- 
placements, where the two sublattices of AA-stacked 
graphite are shifted within each layer against each other 
(geometry I). In this mode, both the nearest neighbor 
bond lengths and the angles change. In the second dis- 
tortion (geometry II), we only consider changes of angles 
between nearest neighbor bonds and keep the bond 
lengths R constant; this distortion does not correspond 
to an eigen mode of the lattice. The third distortion ge- 
ometry is a uniform expansion of the graphite lattice 
(geometry Ill). Using this geometry, we determined 
the equilibrium nearest neighbor bond length to be 
R = 1.418 A, which compares very well with experimental 
data. We consider these distortions of graphite to be 
closely linked to low frequency distortions of  "bucky 
tubes" in which we are mainly interested. The use of three 
different distortions for the calculation of the two force 
constants e and / /g ives  us an independent reliability test 
of the Keating potential in (1). 

We expect the force constant t ,  which describes bond 
bending, to reflect sensitively on the sp  z hybridization in 
the flat graphite sheet or possible deviations from this 
hybridization in case of out-of-plane deformations, sim- 
ilar to those found in "buckyballs" and "bucky tubes". 
In these structures, the tilting angle between adjacent hex- 
agons and pentagons is 142.622 ° . We investigated the 
effect of "buckling" on the force constants by repeating 
the above LDA calculations for correspondingly buckled 
graphite. We used the A2u mode of AB-stacked graphite, 
consisting of  a displacement by + 5 z of each of the two 
sublattices along the z-direction perpendicular to the 
graphite layers. We have chosen a value for fiz which 

Table 1. Calculated force constants e and p [defined in (1)] for 
"fiat" and "buckled" graphite, based on LDA 

System ct [ 105 dyn/cm] B [ 105 dyn/cm] ,fl/c~ 

Graphite ("flat") 1.805 0.662 0.37 
Graphite ("buckled") 2.028 0.680 0.34 
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Fig. 2. The vibrational density of states (DOS) as a function of 
frequency o) for a C20 o "bucky tube", obtained using the Keating 
potential. The DOS is given in units of cm and the peaks are ar- 
tifically broadened; the integral over the frequency range gives the 
number of vibrational modes 

gives the above buckling angle of  142.622 ° between ad- 
jacent hexagons, and kept the nearest neighbor bond 
length constant. We determined the modified force con- 
stants for this structure by applying the distortions of  
geometry I, II, and III. From energy differences for "flat" 
graphite, which has been distorted according to geome- 
tries I and II, we obtain ~ = l . 8 0 5 × 1 0 S d y n / c m  and 
17 = 0.662 × 105 dyn/cm. This gives a force constant ratio 
f l / e  = 0.37. The analogous calculation, based on energy 
differences for geometries II and III, leads to the same 
value for B, but a rather different value for the bond 
stretching constant, e = 5.889 × 105 dyn/cm. Conse- 
quently, we get /~/e  = 0.11 for these distortions. This dis- 
crepancy is indicative of the failure of the two-parameter 
Keating model to reproduce the phonon spectrum of 
graphite correctly, and occurs both for the "flat" and 
"buckled" graphite. We favor the force constants based 
on geometries I and II which do not involve a homoge- 
neous lattice expansion and are related to the structural 
resilience of the "bucky tubes". This choice is supported 
by the agreement of the C60 frequencies determined by 
the Keating model wi th /~/e  = 0.3 with the observed fre- 
quencies [12] and those based on the bond charge model 
[18]. The discrepancy between the force constants ob- 
tained using the different geometry combinations occurs 
also for "buckled" graphite. As we show in Table 1, the 
calculated values for ~ and fl are very similar in "flat" 
and "buckled" graphite. We conclude that the deviation 
from sp  2 bonding is negligible (or has no effect on the 
force constants) in carbon fullerenes and their derivatives. 
In the following, we use the values for "flat" graphite 
layers. 
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Fig. 3. The lowest vibration frequency, co~, and the bending mode 
frequency, coB, as a function of the cluster size n 

The equilibrium geometry of  the highly symmetric C2o 0 
"bucky tube" is shown in Fig. 1 a. The vibrational eigen 
modes of this and other "bucky tubes" have been deter- 
mined using analytic expressions in the force constant 
matrix. In Fig. 2, we show the vibrational density of states 
(DOS) as a function of frequency e) for C200. In order 
to understand the bending rigidity of "bucky tubes", we 
will focus on the lowest non-trivial eigen modes. We ex- 
pect one of  the lowest modes to be the bending mode 
which is shown in Fig. 1 b for a C2oo cluster. Some other 
prominent low frequency modes include an ellipsoidal 
distortion of  the cross section perpendicular to the prin- 
cipal rotation axis, and an internal twist along this axis. 

In Fig. 3, we show the dependence of  the lowest non- 
trivial mode a) 1 and the bending-mode o) B on the cluster 
size n. We find that for all cluster sizes, this softest mode 
corresponds to the ellipsoidal distortion of the cross sec- 
tion mentioned above. Both of  these low frequency modes 
are doubly degenerate. We expect and find that the fre- 
quency of  the bending mode decreases when the length 
of the "bucky tube" increases. For  very long "bucky 
tubes" (consisting of  500 atoms and more), the bending 
mode becomes the lowest non-trivial vibrational eigen 
mode. In the following, we use the eigenvectors of this 
bending mode to study the "beam rigidity" of "bucky 
tubes". 

We base our comparisons of "beam rigidity" on a 
single deformation geometry, namely that of  a beam with 
one clamped and one free end [see the inset in Fig. 4a]. 
The corresponding deformations of  a "bucky tube" are 
derived from its lowest frequency bending mode. For  
such a frozen-in distorted geometry, we define a "neutral 
line" by connecting the centers of  carbon rings which are 
locally normal to the cylinder axis. We determine the 
tangent to this "neutral line" at the one end of the "bucky 
tube" and define the bending distortion A z  by the dis- 
tance of  the other tube end (in the center of a pentagon) 
from this tangent. 

In Fig. 4a, we show energy differences A E ( A z )  (with 
respect to the straight tube) for the C~oo, C200, and C4o o 
"bucky tubes", based on the Keating potential. We found 
it instructive to compare the bending rigidity of  "bucky 
tubes" to the beam rigidity of  Iridium, a material with a 
very high Young's modulus of  Y( I r )=  5.2 × 10 H N / m <  
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Fig. 4. The total energy change z lE to  t a s  a function of the bending 
distortion Az, a for C100, C200 and C4o 0 "bucky tubes", and b for 
C200 in comparison to an Ir beam. The beam bending geometry is 
shown in the inset of a, the results for a C200 "bucky tube" are 
compared to a "thin" and a "thick" cylindrical Ir beam (see text). 
The data points are connected by second order polynomials 

In Fig. 4b, we show the total energy changes A E t o  t as a 
function of bending for the C2o o "bucky tube". We com- 
pare these results to an elasticity theory calculation [19] 
for a solid cylindrical beam of Iridium of same length as 
the C2o o cluster, l =  23.52 }t. For  the sake of  fair com- 
parison, we consider thin Ir beams with a radius of  
r =  3.31 •, the same as the radial distance of carbon 
atoms in a "bucky tube", and thick beams with a radius 
increased by half the interlayer separation in graphite 
[20], i.e. r=4 .99]~ .  Once a point force F is applied to 
one end of  this beam (while the other end is clamped, as 
shown in the inset of  Fig. 4a), the displacement A z  is 
given by [19] 

/3  
A z  = - - - -  F ,  (2) 

3 Y I  

where I is the area moment of inertia of the beam. For  
a solid cylindrical beam with a cross-section A, I is given 
by 
l =  ~" z 2 dA -- re44. (3) 

A 
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Table 2. Force constants for the bending mode of different struc- 
tures. Results for "bucky tubes" are based on (1) and the result for 
an Ir beam on (2) 

System e B [105 dyn/cm] 

Clo o 0.575 
C2o o 0.t51 
(24o 0 0.021 
Ir (beam)" 0.011 
Ir (beam) b 0.058 

"Radius r = 3.31 A and length l= 23.52 A 
b Radius r = 4.99 A and length l = 23.52 A 

For  small displacements Az, we define a force (or spring) 
constant for bending as c s =  F/Az. The values of  c B for 
the Clo 0, C2o0, and C4oo "bucky tubes" are listed in 
Table 2. For  the thin Ir beam (r = 3.31 A) we find cB= 
11.13 × 103 dyn / cm and for the thick Ir beam (r = 4.99 A) 
we get cB = 5.8 x 103 dyn/cm.  Both these values are sub- 
stantially lower than the corresponding value for C2oo. 
F rom Table 2 we infer that e~ decreases when the length 
of  the "bucky tube" increases, which is directly related 
to the softening of  the bending mode shown in Fig. 3. 
Clearly, the continuum approach used in (2) is probably 
stretched to the limit of  its validity when calculating the 
deformations of  an extremely thin Ir wire, where devia- 
tions f rom an isotropic medium and atomic structure be- 
come significant. Nevertheless, (2) is still expected to give 
the right order of  magnitude estimate for the spring con- 
stant of  this wire. Based on the results presented in 
Table 2, we conclude that "bucky tubes" are about  one 
order of  magnitude stiffer than an Ir wire of  comparable 
size. Naturally, we expect the beam rigidity of  multi- 
walled tubules (consisting of  nested cylinders) to be much 
higher. Such multi-walled structures have been recently 
generated by several groups [21]. 

In conclusion, we have calculated the structural rigid- 
ity and the low frequency vibrational modes of  long car- 
bon tubules consisting of 100, 200, and 400 carbon atoms. 
We used a nearest neighbor Keating potential with pa- 
rameters obtained f rom first principles calculations. We 
have shown that "bucky tubes" have a very high struc- 
tural rigidity which is about one order of magnitude larger 
than that of  a cylindrical Ir  wire. Such a large beam 
rigidity, combined with a low mass density, should make 
the "bucky tubes" an ideal component  in future graphite 
fiber composite materials. 
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