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We present a computationally efficient scheme to evaluate the total 
energy of clusters that treats the nonlocality of bonding in very large 
systems, yet scales linearly with the number of atoms. The local 
electronic density of states and the corresponding band-structure 
energy, based on a Slater-Kloster parametrized Hamiltonian, is 
evaluated using the recursion technique. Other energy contributions 
are combined into pairwise repulsive energies. We demonstrate the 
utility of our approach by presenting total energies and densities of 
states for the different bulk forms of carbon. 

THE RELATIVELY recent discovery of carbon 
fullerenes with a similar bonding topology as the 
C60 "buckyball" [1, 2] has ignited the imagination 
of physicists, chemists and materials scientists 
alike in search of new man-made materials with 
unusual properties. For carbon alone, a whole 
plethora of structures has been proposed [3], ranging 
from giant hollow fuUerenes [4] to elongated "bucky 
tubes" [5] and three-dimensional graphitic mem- 
branes with "plumber's nightmare" structures [6, 7]. 
In spite of the strong interest in the equilibrium 
geometry and total energy of these structures, only in 
very limited cases ab initio calculations - -  using 
methods such as the Local Density Approximation 
(LDA) [8] - -  have been attempted due to the 
complexity of these systems. In the case of carbon 
in particular, the local bonding geometry depends 
sensitively on the electronic configuration at each 
given site. This fact limits the predictive power of 
local two- or three-body potentials for this purpose. 
Approximate schemes have been used with limited 
success for small carbon clusters which have a 
substantially different structure than graphite 
[9-11]. Other approaches based on a parametrized 
tight-binding Hamiltonian have been more successful 
in this respect [12, 13]. While these latter schemes do 
predict the correct bonding geometry in different CN 
clusters, the computations are limited by the 
diagonalization of the corresponding Hamiltonian 
matrix which scales as N 3. This computational 
requirement is not acceptable when studying the 
dynamics of very large structures or performing 

molecular dynamics simulations of the growth 
process. 

In this paper we present a new approach to 
calculating the electronic structure, which scales as N 
rather than as N 3. The idea underlying our approach 
is that the electronic configuration at a given site is 
determined primarily by the local environment. When 
calculating the electronic structure, we consider the 
neighboring atoms of the particular site and embed 
the corresponding cluster in a medium which is 
typical of the local bonding geometry. The method 
of determining the electronic structure is closely 
related to the cluster Bethe lattice [14] of the 
nearly equivalent recursion technique [15]. The 
latter method in particular has been very successful in 
the determination of the electronic structure of 
amorphous systems. The formalism which we 
develop below, and which is inspired by the 
recursion technique, provides a very efficient way to 
estimate accurately the total energy of large 
covalently bonded clusters. 

We have found it useful to separate the cohesive 
energy of the system (with respect to isolated atoms) 
into two parts, as 

--Eco h ----- Eband + Ere p. (1) 

The first energy contribution, Eband , is the electronic 
band-structure energy, which is nonlocal by nature 
and reflects the hybridization in the system. The 
second term, Erep, contains the internuclear repulsion 
and all other corrections to Eband such as the closed- 
shell repulsion, exchange-correlation and energy 
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double-counting corrections. We approximate Erep by 
a sum of  pairwise functions Er, as 

Erep = E '  E,(rij, Zi). (2) 
ij 

In the summation, each pair of  nearest neighbor sites 
i a n d j  is counted twice. The functions E, are isotropic 
and can depend on the coordination number Zi of  the 
atoms. 

As shown previously [12], the one-electron spectra 
of  different carbon structures can be obtained to a 
sufficient accuracy by mapping ab initio LDA band 
structures for the corresponding systems onto a 
tight-binding Hamiltonian. In this procedure, the 
essential information about the electronic structure 
and many-body effects in the system is kept intact. 

The one-electron band-structure energy is given 
by 

Eband : ~i (JEr°°Egi(E) dE-Eni'a~c*) - ct (3) 

Here, the summation extends over all atomic sites i, 
Ni(E) is the local electronic density of  states, and EF 
is the Fermi energy which is a global quantity. The 
reference energy of  an isolated atom is expressed in 
terms of  the energy levels % and the corresponding 
occupation numbers ni,~ which satisfy the condition 

E n i , ~ = J E ~ N i ( E )  dE. (4) 

With this definition, Eband is zero for both empty and 
full bands. 

The most difficult part of  the total energy 
evaluation is an efficient scheme to determine the 
local density of states. While Ni(E) should contain 
the essential physics associated with the nonlocality 
of  bonding, the exact function is not very important 
since the band structure energy, given by equation 
(3), is an integral quantity of  Ni(E). Even though the 
local density of states can in principle be determined 
using ab initio techniques [16], we prefer a tight- 
binding parametrization for its computational 
efficiency. Calculations based on the tight-binding 
formalism are much easier to perform than analogous 
ab initio calculations especially when describing large 
unit cells and low symmetry situations. Even in 
absence of  symmetry, the tight-binding Hamiltonian 
can be used to determine the local density of  states 
from a moment expansion, using the recursion 
technique [15]. 

For  carbon systems, we based our elec- 
tronic structure calculations on a Slater-Koster 
parametrized [17] four-state tight-binding 
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Hamiltonian [12]. The energy levels of  carbon atoms 
are E s = 7.3eV and Ep =0 .0eV.  The off-diagonal 
matrix elements are the hopping integrals with an 
exponential distance dependence. Their values 
for d =  1.546~,, which is the equilibrium nearest- 
neighbor distance in diamond, are V~s~ = - 3 . 6 3 e V ,  
Vsp~ = 4.20eV, Vpp o = 5.38eV, and Vp~ = -2 .24eV 
[12]. Instead of  using a fixed cutoff distance for 
determining nearest neighbors, we reduce the 
interatomic interactions by multiplying the hopping 
integrals with the cutoff function [ 18] exp ( -  (r/r c) nc + 
(ro/rc)nC), where r o = 1.546.~, r c = 1.5r 0, and 
n c = 10. 

As mentioned above, the idea underlying this 
approach is that the interactions between two sites do 
not depend significantly on the bonding topology far 
away. This approach has been used successfully in the 
calculation of  the electronic structure of  amorphous 
semiconductors [14]. The local density of  states at the 
site i = 0 is given by 

lim ( - 1 ' ) I m  Goo(E+ie). (5) No(E)= 
e --* O \ Tr/ 

The G0o element of the Green function matrix is given 
by the Dyson equation as 

1 
G0o(E) = ( ~ 2 - - ~ )  00 

- b 2  E - a 2 

1 
= b~ (6) 

E -  a0 b2 2 
E - a l  - -  

The continued fraction coefficients a, and b z are 
related to energy moments #~, = j'_+~ dEE~No(E) of 
the local density of  states at the site i = 0. These 
coefficients are obtained by tridiagonalizing the 
Hamiltonian matrix of  the system, 

a0 bt 0 . . .  

bl al bE . . .  
HrD= 0 b2 a2 . . .  (7) 

Charge transfer between inequivalent sites in 
the structure is reduced by an on-site Coulomb 
interaction which, in the mean-field approximation, 
can be mapped onto a crystal potential. Variations of 
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the crystal potential impose a rigid shift on the local 
densities of states. This shift of  the core and valence 
levels does not affect the crystal cohesion, yet is 
reflected in different core level binding energies. In 
our calculation, we determine this shift by imposing a 
local charge neutrality condition 

JE~ Ni(E) dE = const. (8) 

In the following, we describe useful simplifications 
which lead to an efficient computation of the local 
density of states for different structures. The specific 
case of carbon is likely to be computationally the 
most demanding due to the complexity of carbon 
bonding. Directional bonding, i.e. the preference for 
definite bond angles for sp, sp 2, or sp 3 type bonding, 
requires that at least the four lowest moments #~ be 
included in the continued fraction. Furthermore, it is 
essential to treat the s, Px, Py and Pz subbands in the 
density of states separately in order to represent 
correctly the bond stretching and bond bending 
forces. 

The fifth moment of density of states depends 
only on the first and second neighbors of any 
given site. The corresponding information, contained 
in the recursion coefficients a,, and b, 2, n = 0, 1, 2, 
is determined by tridiagonalizing the cor- 
responding small submatrix of the Hamiltonian 
matrix. Truncation of  the continued fraction after 
b 2 would lead to a set of df-functions for the density of 
states, corresponding to a small isolated cluster with 
many dangling bonds [19]. A physically more 
reasonable approach to describe very large 
structures is to embed the small cluster in an average 
environment with similar bonding. This can be 
achieved by attaching a Bethe lattice to the cluster 
[14] which, to a large degree, is equivalent to using 

t(E) = E -  a ~ -  t (E) '  (9) 

giving the square root terminator t(E) [20] in the 
continued fraction in equation (6). The terminating 
coefficients a~ and b 2 are easily determined in the bulk 
limit from the lower and upper band edges. In our 
calculation, these values are taken from the linear 
chain, the graphite monolayer or bulk diamond, 
depending on the local coordination of the site i = 0. 
The density of states for these structures, obtained 
within the tight-binding formalism is shown in 
Figs. l(a), (b) and (c). 

As mentioned earlier, the essential information 
for the calculation of deformation energies is 
contained in the recursion coefficients an, b 2 with 
n < r/, r /~  2. Attaching a square root terminator to 
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Fig. 1. Electronic local density of states N(E) (solid 
lines), integrated density of  states j-_e~ dEN(E) 
(dashed lines), and the band structure energy 
--Eband(EF) as a function of band filling (dotted 
lines) for different carbon structures. Results of a 
tight-binding band-structure calculation for an 
infinite carbon chain (bondlength d c c ~  1.286A) 
(a), a graphite monolayer (dcc = 1.418A) (b) and 
bulk diamond ( d c c =  1.546 A) (c) are compared with 
the simplified recursive results in (d), (e) and (f). The 
energy zero coincides with the Fermi level for a half- 
filled band, corresponding to neutral carbon. 

the continued fraction of equation (6) at this point 
would mean to ignore the specific bonding topology 
and the corresponding connected loops which modify 
the higher moments and continued fraction coeffi- 
cients beyond 7/. We have found it useful to consider 
continued fraction coefficients beyond r /=  2 in the 
expression for the density of states. Rather than 
calculating these coefficients explicitly by tridiagona- 
lizing an accordingly much larger Hamiltonian 
submatrix, we use previously calculated coefficients 
an, b2(3 ~<n ~< 8) for the bulk structures as a "patch" 
which we splice onto the continued fraction. The set 
of coefficients for a linear chain, graphite and 
diamond is selected according to the coordination 
number of the site of interest. In order to avoid 
strong oscillations in the density of states due to this 
"patch" and the square root terminator, we mix in 
the "patch" coefficients with a n, b 2 and the terminat- 

2 ing coefficients a~, b, so that no strong discontinuities 
occur in a, and b 2 at n = r/ and n = u [21]. The 
continued fraction coefficients in the "patch" 
r /<  n < u are given by 

1 [( ~ra  (1 sin-~-) a~]Tra 

1 (1 7ra~ 21 sin-~--) b~ + _ + ---- - sin-~-) b~] (lO) 

with a = ( 2 n - r / - v ) / ( u - r / ) .  While the above 
procedure gives an improved description of the 
density of states, the higher "patched" coefficients 
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Table 1. Band-structure energy Eband (per atom) for different carbon structures, based on tight-binding 
calculations ( TB) or a simplified calculation using the recursion technique (RT) 

C (chain) C (graphite) C (diamond) C60 

ETaBnd (eV) -28.194 -30.460 -29.220 -30.143 
EbRarnd (eV) -28.104 -30.392 -29.117 -30.004 

do not affect the lower moments of the density 
of  states and hence have a small effect on the 
band structure energy. We would like to point 
out that our method of  termination is tolerant 
of  a possible inaccuracy in the terminating 
coefficients and does not include unphysical 
oscillations in the local density of states. More- 
over, the straightforward parametrization of  the 
Hamiltonian and our simplified treatment of  
the density of  states make an analytic evaluation 
of  the forces possible, at least within the 
Hel lman-Feynman scheme. 

The densities of  states of the infinite chain, a 
graphite monolayer, and bulk diamond, obtained 
using the above procedure, are shown in Figs. l(d), 
(e) and (f). Also shown in this figure are the 
integrated density of  states and the band structure 
energy as a function of  band filling (or the position of 
the Fermi level). The bands in perfect neutral carbon 
structures are half filled. The numerical results for the 
band structure energies in this case are given in Table 
1. These results indicate that our approximate 
recursive treatment of  the local density of states can 
describe bonding in the different carbon structures 
with adequate precision. 

Once the band structure energy is known, the 
total energy of  the system can be evaluated using 
equation (1). The required pairwise repulsive energies 
Rrep are obtained from LDA total energies for 
symmetric bulk structures such as infinite chains, 
graphite and diamond, and band structure energies 
based on the tight-binding Hamiltonian with no 

further approximations. In Table 2 we list formation 
energies of  different systems [24] with respect to 
graphite, defined by A E f = E c o h - E  c oh(graphite). 
We find very good agreement between our results and 
the experiment. We note that out approach represents 
a significant improvement over the well-established 
Tersoff potential [9], especially for linear structures. 

As a test of  our approach, we calculate the 
electronic structure and formation energy of  the C60 
molecule. All atoms in this cluster are equivalent, so 
the calculation of  the local density of states requires 
only the tridiagonalization of  a single Hamilton 
submatrix associated with a 10-atom cluster and the 
knowledge of  the recursion coefficients of  a graphite 
monolayer. In this calculation, we have assumed the 
lengths of  the single and the double bonds to be the 
same, dcc=  1.418A. The distribution of the energy 
eigenvalues of  C60, based on the diagonalization of  a 
240 x 240 Hamiltonian matrix, is shown in Fig. 2(a). 
The local density of  states, obtained from our recursive 
method, is given in Fig. 2(b). The occurrence of 
a large H O M O - L U M O  gap in the C60 molecule 
is related to the nonvanishing curvature of  the 
C60 surface. In comparison to the flat graphite 
monolayer, the surface curvature increases the 
interaction in the weakly bound 7r electron system. 
The main reason for this effect is the interaction 
between neighboring p± orbitals (which are locally 
perpendicular to the surface), which is a pure 
ppTr interaction in graphite, but gains a nonzero pptr 
component at the curved C60 surface. This physics is 
contained in the fourth moment of  the local density 

Table 2. Formation AEf = Ecoh -- Ecoh(graphite) (in eV, per atom) for different carbon structures. Our present 
results, based on the recursion technique (RT), are compared to tight-binding (TB), Local Density 
Approximation (LDA), Tersoff potential [9] results, and experimental data 

C (chain) C (graphite) C (diamond) C60 

Present approach (RT) 1.14 0.0 0.05 0.39 
Tight-binding 1.12 0.0 0.02 0.33 
LDA 1.10 0.0 0.02 
Tersoff a 5.41 0.0 0.03 0.82 
Experiment 0.0 0.0 b 0.36 c 

a See Ref. [9]. 
b See Ref. [22]. 
c See Ref. [23]. 
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Fig. 2. Local electronic density of states N(E) (solid 
lines), integrated density of states (dashed lines), and 
the band structure energy --Eband(EF) (dotted lines) 
for the C60 cluster. Tight-binding results, obtained by 
diagonalizing a 240 x 240 Hamilton matrix and 
shown in (a), are compared to simplified recursive 
results in (b). The position of the "Fermi level" in the 
HOMO-LUMO gap is emphasized by the dotted 
line. 

of states and hence addressed in our model. Even 
though our scheme underestimates the complexity of 
the local density of states, it shows a signature of the 
large HOMO-LUMO gap in the local density of 
states of C60 shown in Fig. 2(b). 

The differences between the densities of states, 
obtained using different methods, are nearly washed 
out when comparing integrated densities of states and 
band structure energies. This fact is demonstrated in 
Table 1. A comparison of band structure energies for 
different carbon structures, based on different levels 
of sophistication, indicates that the recursive 
approach is sufficiently precise. Even more interest- 
ing is the comparison of the results for graphite and 
the C60 molecule with the same bond lengths. Since 
all carbon atoms are three-fold coordinated, the 
repulsive contribution Ere p to Eco h in equation (1) is 
the same for both the structures. The lower binding 
energy of the (unrelaxed) C60 structure with respect to 
graphite is then reflected in the accordingly smaller 
absolute value of Eband (and higher formation energy 
AEf) of the C60 molecule due to the less favorable 
hybridization of orbitals. Of course, this energy 
difference is lowered when considering the relaxed 
structures. We do not expect this number to change 
much upon relaxation [25]. 

In summary, we have developed and implemented 
a computationally efficient scheme to evaluate the 
total energy of very large systems which lack 
symmetry. Our approach, based on the recursion 
technique for the local electronic density of states, 
accounts for the nonlocality of bonding, yet scales 
linearly with the number of atoms. This is a 
significant advantage over standard total energy 
calculations, based on the diagonalization of a 
Hamilton matrix, which scale as N 3. We 

believe that this fact, combined with a total energy 
expression which effectively decouples individual 
sites, will prove to be a strong advantage when 
performing molecular dynamics calculations on 
massively parallel computers. 
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