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We calculate collective electronic excitations and their damping in small Na. and Li. clusters. The ground state properties of 
these systems are described using the local density approximation, and the electronic excitations by the random phase approxi- 
mation. The collective excitations in the fust two closed-shdl clusters with n = 2,s atoms are discussed in detail. We find that the 
coupling of electronic levels to vibrational degrees of freedom accounts quantitatively for the observed width of the collective 
electronic excitations in alkali dimers. The origin of the aualogous line broadening in Na, is prcsemly uuresolved. 

Alkali-metal clusters are very interesting systems 
which bridge the gap between isolated atoms and bulk 
metals. The large degree of delocalization of valence 
electrons, characteristic of the simple metals, is an 
important property of these clusters. This delocali- 
zation shows up most dramatically in the appear- 
ance of magic numbers corresponding to shell or- 
bitals encompassing the entire cluster [ 1,2]. The 
electronic response of these systems is particularly 
interesting in that it shows one of the characteristics 
of a macroscopic plasmon, namely a large fraction of 
the oscillator strength concentrated in a narrow fre- 
quency range [ 3 1. In the following, we will address 
this collective mode as the cluster plasmon mode [ 31. 
In contrast to the prediction of the classical Mie the- 
ory as applied to metal spheres, this collective mode 
is typically 30% lower in frequency for small clusters, 
and does show a pronounced size dependence [4]. 

i Present address: Nuclear Theory Group, Department of Phys- 
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Moreover, the discrepancy between the classical Mie 
picture and the observed excitation energy is much 
larger in Li, than in Na, clusters, for reasons pres- 
ently unknown [ 5 1. 

Of especial interest to us is the width of the col- 
lective excitation. The observed width of the plas- 
mon peak is 0.11 eV in Naz [ 6 ] and 0.25 eV in Nas 
[ 71, much larger than the natural line width for the 
photoexcitation. In large clusters with a high density 
of states near the highest occupied (HOMO) and 
lowest unoccupied molecular orbital (LUMO) , par- 

ticle-hole excitations (Landau damping) and mul- 
tiparticle-hole excitations will dominate the frag- 
mentation of the plasmon [ 89 1. In the small clusters 
with n ;5 8-40 atoms, however, Landau damping is 
considered to be negligible due to the low level den- 
sity near the HOMO. As we will show below, the 
dominant plasmon damping mechanism in these 
systems results from the coupling of electronic ex- 
citations to cluster vibrations. The quantum motion 
of nuclei gives a broadening which is described more 
precisely as a distribution of states with a variable 
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number of vibrational quanta excited together with 
the plasmon. An increased nuclear motion in the 
ground state has been estimated to account for a line 
broadening with increasing temperature [ 10,111. 

Because of the large number of vibrational modes 
and the small value of the vibrational energy, it hardly 
makes sense to study this effect by explicit calcula- 
tion of the vibrational wave functions and the as- 
sociated Franck-Condon factors for the transitions. 
Instead, we shall apply an approximation that di- 
rectly gives the width of the strength distribution if- 
respective of the quantization of the vibrational final 
state. 

We determine the ground state structural and elec- 
tronic properties of small alkali clusters using the lo- 
cal density approximation (LDA) [ 121. Electronic 
excitations are calculated using the random phase 
approximation (RPA) [ 13 1, using LDA single-par- 
ticle wave functions and energies. In this Letter, we 
apply this formalism to Li2, Na, and Lis, Na, clus- 
ters. The complete spectroscopy of the dimers is well 
established [ 141. Consequently, these systems are 
ideally suitable for testing the accuracy of our meth- 
ods in the ground state, and the power of our pre- 
dictions in the excited state. For the larger clusters, 
the scenario is not so clear, since even their exact 
ground state geometry is uncertain [ 15-181. We 
proceed as follows. We first demonstrate the preci- 
sion of our method by calculating the ground state 
properties of the bulk metals and comparing them to 
experimental data. We do the same for the ground 
state of the addressed clusters. Next, we use the LDA- 
RPA to determine the excitation spectra. Finally, we 
determine the coupling of electronic excitations to 
cluster vibrations and compare the results with 
experiment. 

In our LDA calculations, we consider the valence 
electrons only, and describe the effect of the core 
electrons by ab initio norm-conserving nonlocal 
pseudopotentials. Our pseudopotentials have been 
generated using the Hamann-Schltlter-Chiang 
scheme [ 191. The electronic configurations which 
we used to generate the pseudopotentials, Li 2s”.‘2po.’ 
(with the core radii r,(2s)=O.915 A and 
r,(2p)=O.788 A) and Na 3s0~73p0~13d0~05 (r,(3s) = 
1.005 A, r,(3p)=1.323 A, r,(3d)=1.746 A), pro- 
vide very good transferability especially towards the 
excited states. A partial core correction has been used 
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in the LDA calculations [ 201. We use the Ceperley- 
Alder parametrization of the exchange-correlation 
potential [ 2 1 ] in the Kohn-Sham equations. 

In order to minimize the influence of a finite basis 
on our results, we decide to place our clusters on a 
face-centered cubic superlattice with a large lattice 
constant. This minimizes the volume associated with 
each cluster for a constant inter-cluster separation. 
Plane waves are the natural basis in the case which 
can be improved systematically. We find this ap- 
proach more reliable for alkali clusters with delo- 
calized electron states than an atom-centered Gaus- 
sian basis. Treament of an isolated cluster in real 
space on a radial grid turns out numerically as in- 
volved as our approach. We used an energy cutoff in 
the Fourier expansion of the charge density E_= 6.9 

Ry for the solid and E-=4.0 Ry for the clusters. 
Symmetry has been used to reduce the computa- 
tional effort. The lattice constant a = 15 w for the su- 
perlattice guarantees negligible overlap between the 
clusters and hence vanishing crystal field splitting, as 
verified by comparing the band structure at different 
points in the (very small) Brillouin zone. 

The calculated ground state properties of bulk Li 
are the lattice constant ~~~~3.42 8, (&.=3.49 A 
[ 22 ] ), the bulk cohesive energy (with respect to an 
isolated spin-polarized atom) ELDA - cob -1.64 eV 

(K$ = 1.63 eV [22]), and the bulk modulus 
B,,=0.112~10~‘Pa (B,,=O.l16~10*~Pa [22]). 
The corresponding values for Na are a,=4.04 8, 
(~~~~4.23 A [22]), &&cl.23 eV (E:~=l.ll 
eV [22]), and Bru~=0.089x10” Pa (EeXp= 
0.068 x 10” Pa [ 221) . As expected from converged 
LDA calculations, the bulk is somewhat overbound. 
The larger difference between the calculated and the 
observed bulk moduli is presumably due to the pseu- 
dopotential approximation which suppresses ex- 
change and correlation between valence and core or- 
bitals. This effect is expected to be much smaller in 
atomic clusters where long-range exchange and cor- 
relation is absent. 

The smallest system we aim to describe are the di- 
mers, the first closed-shell system within the spher- 
ical jellium background model. The large stability of 
alkali dirners is explained within the jellium model 
by a large separation between the fully occupied 1s 
state and the empty lp state of the cluster. The dimer 
geometry deforms the charge density along the mo- 
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Fig. 1. Franck-Condon broadening of the collective electronic excitations in (a) Nar and (b) Liz. The lowest levels are the LDA disso- 
ciation energies D(d) of the diiers as a function of the bond length d. The higher levels give the excitation energies, which are presented 

as WI +&4(d). 

Table 1 
Ground state properties of sodium and lithium dimers. Equilibrium bond length de, dissociation energy D., and vibration frequency w, 

System 

Liz 
Nas 

d.(A) 

exp. a) 

2.672 
3.078 

theory 

2.730 
3.032 

4 (eV) 

exp. ‘) 

1.03 
0.72 

theory 

1.01 
0.91 

%.I, (meV ) 

exp. 10 

43.572 
19.742 

theory 

46.0 
20.0 

‘)Sceref. [14]. 

lecular axis, and splits the threefold degenerate lp 
level into one o and two x states. The dimer has only 
one nuclear degree of freedom, the dimer stretch 
mode, which simplifies the calculation of electron- 
vibration coupling significantly. 

In fig. 1, we show the total energy of the system as 
a function of the interatomic distance. LDA results 
for dissociation energies, bond lengths and vibra- 
tional energies of Liz and Naz, shown in table 1, are 
in striking agreement with the experimental values 

1141. 
The next closed-shell configuration in alkali clus 

ters occurs for eight atoms. The physics of these sys- 
tems is much more complex due to their eighteen nu- 
clear degrees of freedom and many different isomers 

which lie close in energy. As mentioned before, not 
even the equilibrium geometry is well established 
[ 15-181, although calculations [ 16-181 suggest the 
T,, symmetry for the ground state. Consequently, we 
base our calculations on this geometry. The LDA su- 
perlattice calculations are essentially the same as for 
the dimers, but we increase the fee lattice constant 
to a= 50 A in order to minimize the interaction be- 
tween clusters. The latter was checked by observing 
the calculated band dispersion Ae across the Brillouin 
zone. Our value Ae x 0.0 1 eV, gives an estimate for 
the upper bound of cluster-cluster interaction. We 
use again an energy cutoff of 4.0 Ry, corresponding 
to a plane wave basis with 4279 components. The 
equilibrium structure of these clusters in the Td ge- 
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ometry is uniquely defined by the radial distance di ment RPA by choosing the potential field as the ba- 
of the “inner tetrahedron” atoms from the cluster sic object of computation. In this case, the wave 
center, and the corresponding distance do of the outer function enters indirectly via the dynamic polariz- 
tetrahedron atoms. The calculated atomization en- ability. However, if only a few electron states par- 
ergy per atom for the Nas cluster in equilibrium ge- ticipate in the excitation, the most efficient approach 
ometry with diz2.11 A and d,=3.51 A is 0.77 eV, is to set up the RP.4 equations for the wave function 
in reasonable agreement with the value of 0.86 eV, directly [ 241. We shall use this method in the pres- 
obtained in a previous LSDA calculation [ 151, ent work. 

Once the equilibrium geometries are known, we 
proceed to calculate the response to external electric 
fields. The static response is a ground state property 
of the system and can be obtained directly from LDA. 
We use the above described superlattice geometry Ml 
to determine the static dielectric response of these 
systems to a field which is parallel or perpendicular 
to the dimer axis. For an isolated Na atom we find 
txLDA( Na) = 22.0 A’, in good agreement with the ex- 
perimental value of (u,,,(Na)=23.6 A3 [23]. The 
polarizability of a negatively charged sodium ion 
(YLD,,(Na-) is 63.0 AS, much larger than that of the 
atom, caused by the weak binding of the outermost 
electron. The polarizability of the Naz along the axis 
is &(Na,) ~63.5 A3, while the value perpendic- 
ular to the axis is a&,*( Naz) = 22.1 A 3. The average 
over all directions of the polatizability gives 
(aLo,,(Naz))=fCj,, arl=35.9 A’, which can be 
measured experimentally. This values agrees well 
with local spin density approximation (LSDA) cal- 
culations of Moullet et al. [ 181, who obtained 
crt(Naz)=53 A’ and &(Na,)=30 AS, leading to 
( aLD,,(Na2) ) = 37.7 A’. 

Once the static dielectric response is established, 
we proceed to calculate the electronic excitation 
spectrum within the linear response framework. We 
use the RPA which is based on an electronic ground 
state described by LDA. RPA automatically satisfies 
energy-weighted sum rules, and has the correct phys- 
ical limits, namely independent-particle transitions 
at high momentum transfer, where the interaction is 
weak, and strong collective excitations at low mo- 
mentum transfer, where the interaction is strong. It 
is customary in condensed matter physics to imple- 

We start with the single-electron wave functions 
k(r) and energies ei, obtained from the LDA cal- 
culation. We shall need both occupied and unoccu- 
pied orbitals, from which we construct the particle- 
hole states. We designate the particle-hole state as 
I ij-’ ), where i designates an unoccupied (particle) 
state and j an occupied (hole) state. The Hamilto- 
nian matrix may be separated into a diagonal part 
that gives the energy of the particle-hole state, and 
an off-diagonal part that describes the coupling to 
other particle-hole excitations. The diagonal part in- 
cludes the kinetic energy operator and the self-con- 
sistent Hartree field. We write this part of the Ham- 
iltonian matrix as 

(ij-‘I~li’j’-‘)=SiilS,l(~i--Ej). (1) 

The residual interaction contributes matrix elements 
of the form 

= drdr’~t(r)q)j(r’)v(r,r’)~i,(f)~~(r’), 
s 

(2) 

where u includes the residual Coulomb interaction 
and exchange correlation. The RPA eigenvectors #a 
and their associated frequencies o, are given by the 
eigenvalue equation 

@I In a cluster superlattice, the external field is generally modi- 
fied by the field of the induced dipoles on the other sites. Since 
our system has inversion symmetry, the corresponding ccrrec- 
tion vanishes exactly at each lattice point, and is very small over 
the cluster volume. The polar&abilities of atoms and dimers can 
then be obtained directly using second order perturbation theory. 

(~o,)~u~‘=c”~(~+2v)E1’~u~. (3) 

Here, the vector and matrix indices have been omit- 
ted for simplicity, and ui represents the amplitude 
of the particle-hole configuration I ij-’ ) in the col- 
lective mode LY. The normalization of the amplitudes 
is given by &I ut I*= 1 /fro,. Finally, the transition 
strength with an external field D(r) is given by 

I~(yIDIo~12~I~~ju~~ilDl~~12~ 
Let us first discuss the application of the above 

formalism to the dimers, Liz and Naz. The results of 
our calculations for these systems, obtained using 
different approximations, are summarized in fig. 1 
and table 2. In fig, 1, we plot the energy of the dimers 
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Fig. 2. Calculated spectral fimction of Nal (in arbitrary units) 
and its broadening due to nuclear zero-point motion (- - -), as 
compared lo the observed photoionization spectrum of ref. [ 61 
(-). The displayed theoretical data are red-shifted by 0.5 eV 
with respect to the calculated results. 

for a given electkonic configuration as a function of 

the bond length d. The lowest curve gives LDA re- 
sults for the ‘C: ground state. The l I; : curve is ob- 
tained by adding the RPA excitation energy to the 
energy of the l Cl state. In the adiabatic approxi- 
mation, we determine the transitions from the en- 
ergy difference between the vibrational ground state 
and the excited state in the same geometry, as in- 
dicated by arrows in fig. 1. From fig. 1 we notice that 
the potential energy surface and equilibrium geom- 
etry of the excited state are different from those of 
the ground state. The equilibrium bond length 
d&,,( Na, ) = 3.50 A compares well with the exper- 
imental value dz,, (Na,)=3.63 A [ 141. The cor- 
responding value for Liz is dzRpA( Li2) =3.17 A, 

which again compares well with the observed value 
d&,,,(Li,) =3.10 8, [ 141. Experimental data [ 141 
indicate that the energy difference between the 
‘Zf 8 ground state at d, and the ‘X2 excited state at 
dz is 1.76 eV for Li, and 1.82 eV for Naz. These 
energies compare reasonably well with our LDA- 
RPA results of 2.20 eV for Liz and 2.33 eV for Naz. 
However, a comparison between calculated and ob- 
served adiabatic (vertical) excitation energies in ta- 
ble 2 shows that the calculated plasmon energy is 
blue-shifted by 0.5 eV (see fig. 2) with respect to the 
observed value. This blue-shift is characteristic of 
LDA-RPA calculations, and reflects the incorrect 
asymptotic behavior of the effective potential. 

As we will discuss below, the difference between 
the potential energy surfaces in the ground and the 
excited state is responsible for vibrational broad- 
ening of electronic excitations. Of particular impor- 
tance in this respect is the shape of the excited po- 
tential energy surface. We find our calculated values 
for the vibrational frequencies in the ‘I?: state 
o:(L&)=31.7 meV and o:(Naz)=17.8 meV to 
compare very well with the experimental data [ 141 
w&,(Li,)=31.7meVandw&,(Nal)=14.6meV. 

As expected and discussed in the following, these 
results are superior to calculations for spherical jel- 
lium representing Naz and Liz clusters. Our corre- 
sponding LDA-RPA results, obtained using the 
JELLY-RPA program [ 25 1, are shown in table 2. In 
the jellium model scenario, the single-particle ground 
state has a 1s character, and the lowest unoccupied 
states have lp, Id and the 2s character. The spher- 
ical potential clearly cannot describe the splitting of 
the first two excited states which is substantial in the 
dimers. Among the above jellium states, there is only 

Table 2 
Collective electronic excitations in small sodium and lithium clusters. Our results for the plasmon frequency fio~ and its width r 
are listed together with results based on spherical jellium [25], fro IELLv_w.,, and results of the classical Mie theory, 140, 

System 

Liz 
Naz 
L& 
Nag 

fi+slw (cV) 

exP. 

1 76 &b’ 
1:92 c’ 
2.55 b, 
2.53 *’ 

theory 

2.23 
2.43 

3.10 

r (eV) 

exp. 

0.06 0-b) 
0.115’ 
0.4 b’ 
0.25 *’ 

theory 

0.063 
0.095 

0.03 

fmELLY.RP‘4(eV) fistic 

wry theory 

3.6 4.6 
2.8 3.5 
3.6 4.6 
2.8 3.5 

“Seeref. [26]. “SeereC [27]. “Seeref. [6]. “‘Seeref. [7]. 
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one dipole-allowed transition from the ground state, 
namely the Is+ lp transition. Other allowed tran- 
sitions have a much larger excitation energy, and are 
essentially single-particle transitions. Our numerical 
results, shown in table 2, yield values for the collec- 
tive excitations in jellium which lie up to 60% above 
the LDA-RPA results for the realistic geometry, 
mainly due to the spherical approximation in the jel- 
lium model. Another important disadvantage of 
spherical jellium is that it cannot address vibrational 
damping of electronic excitations, which we shall 
discuss below. 

Next, we turn to the Li, and Naa clusters. The re- 
sults for the collective excitation energies in these 
systems, obtained using different approximations, are 
summarized in table 2. The LDA calculation for 
spherical jellium gives the occupied ground state lev- 
elsate(ls)=-4.46eVande(lp)=-3.19eV.The 
lowest unoccupied states he at e ( 1 d ) = - 1.65 eV and 
E( 2s) = - 1.15 eV. The relatively large HOMO- 
LUMO gap of 1.54 eV contributes substantially to 
the stabilization of this magic cluster size. The LDA- 
RPA calculations for this system predict a plasmon 
energy of fiw,,,,,,,= 2.8 eV. 

Our LDA calculation for Naa in T., geometry shows 
that the lowest nondegenerate unoccupied level, cor- 
responding to the jellium 2s level, lies at E= -0.82 
eV and is lower in energy than the manifold of levels 
originating from the jellium 1 d level. This manifold 
results from symmetry breaking of the fivefold de- 
generate Id type level of the spherical jellium into a 
threefold degenerate level at e= - 0.73 eV (consist- 
ing of orbitals with xy, yz, zx character) and a dou- 
bly degenerate level at c= -0.35 eV (consisting of 
orbitals with 2zz-x2-yz, x*-y2 character). 

The RPA spectrum of Nas in the realistic geom- 
etry discussed above is given in rig. 3. The spectrum 
shows three distinct peaks, but is dominated by a 
single resonance at #~o,~,,,=3.1 eV. This is in 
agreement with experimental results [ 71, but dis- 
agrees with previously calculated photoabsorption 
spectra [ 281. The strong resonance exhausts 87.41 
of the f-sum rule, which is indicative of its strong 
collective character. As in Na,, this value is blue- 
shifted with respect to the experimental value 
fi~~~r~~~~,~~,,= 2.53 eV 17 1. 

Our above results indicate that the present scheme 
is able to determine collective electronic excitation 

526 

Fig. 3. Calculated oscillator strength distribution in the 
tion spectrum of Na8. 

quite well, especially when compared to the jellium 
model. Equally important as the plasmon excitation 
energy is the fragmentation of this collective mode. 
Due to the low level density near the HOMO, Lan- 
dau damping is improbable in these systems [ 9 1. The 
dominant broadening mechanism at T=O K is the 
coupling of the electronic excitations to nuclear zero- 
point motion, as described by the Franck-Condon 
effect. With increasing temperature, higher vibration 
modes and possibly transformations between differ- 
ent isomers are likely to further broaden the plasmon 
line width. This thermal broadening mechanism is 
expected to play a more pronounced role in the larger 
n = 8 atom clusters with soft vibrational modes. 

The Hamiltonian which describes the coupling be- 
tween the electronic excited state E, and the vibra- 
tional normal modes fi with energy fro, is [ 291 

ff=c+ 
{ 

e,+ 1 M,(a~+a,) 
Y > 

+ 1 fio,a$z,. (4) 
P 

Here, ct and ut are the creation operators for elec- 
tronic and vibrational states, respectively. In the case 
of dimers, eq. (4) is strongly simplified due to the 
presence of a single ground state vibration mode with 
energy fro,. The coupling of electrons to nuclear mo- 
tion is described by the term M(a++a) =Fx, where 
F is the slope of the potential energy surface for the 
excited state at the transition point. As a result, the 
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exact solution for the spectral density distribution 
A(ho) at zero temperature is given by the Poisson 
distribution [ 29 ] 

“=O rr: 

6(ho-c,+gikoo-hoIn), (5) 

where w1 is the vibrational frequency of the excited 
state. In this equation, g is related to the slope F and 
the ground state vibration energy hw, by g= 
F2/2mho8, and n gives the corresponding quantum 
level. A (tiw ) is hence a sum of equally spaced delta 
functions (as shown in fig. 2), with separation en- 
ergy fro, and a Poisson peak height distribution. In 
the limit of large g, the Poisson distribution can be 
approximated by a Gaussian distribution, as 

A(h)= E ’ 
.dJZGi 

ev[ - (n-g)*/2nl 

The resulting line shape has a full width at half max- 
imum (fwhm) r, which is given by 

r=2F z J (7) 

for the vibrational ground state corresponding to 
T= 0 K. An intuitive way to understand this formula 
is the following. The probability distribution for a 
harmonic oscillator in the ground state is a Gaussian 
with a width (Ax)*=fi/mcoo. Assuming that the de- 
pendency of the excitation energy on x is given by 
AE=FAx, one obtains for the distribution of exci- 
tation energies f(E)=exp[ -moo(E-&)*/fiF’]. 

This is essentially the same result as in eq. (7). 
Our results for the plasmon damping in Na, and 

Liz are summarized in table 2 and fig. 2. For Li2, line 
broadening can be estimated using precise data for 
the equilibrium geometry and vibrational modes of 
the ground and the excited states [ 261. The corre- 
sponding results are given in table 2. For Nat we ob- 
tainforthe’Z:+‘Z: transition a fwhm of 0.10 eV, 
in very good agreement with the experimental value 
r= 0.11 eV [ 61. The perfect agreement of the en- 
velope functions in fig. 2 indicates that in this case, 
the coupling between electronic and vibrational de- 

grees of freedom dominates the plasmon fragmen- 
tation. For the ‘Z+ B + ‘II, transition, we predict a 
line width of 0.06 eV. No experimental data for the 
line width are presently available for this transition. 

Investigations of the ’ vibrational broadening of 
collective electronic excitations are in progress for 
Li8 and Nag. The calculation is more complex not 
only due to the larger cluster size, but also due to the 
significantly larger number of nuclear degrees of 
freedom in these systems. In order to obtain a rough 
estimate of the plasmon line broadening in these sys- 
tems, we proceed as follows. We assume that the 
broadening is dominated by a single low-frequency 
mode with a large quadrupolar component. We re- 
strict our calculations of the clusters with assumed 
Td geometry to the lowest vibration mode with D2d 
symmetry, which is obtained using the parametrized 
many-body alloy Hamiltoniau [ 301. The LDA-RPA 
calculation for this distortion indicates only a very 
small line broadening in Nas of rxO.03 eV, much 
smaller than the observed value r,,=O.25 eV [ 7 ] . 
The discrepancy between the calculated and the ob- 
served value may be due to our neglect of the other 
vibrational degrees of freedom, or a large tempera- 
ture of the observed clusters. For a thermally excited 
cluster, r can be estimated in analogy to ref. [ 111 as 
r= F(k, 7% In 2/mwa)‘/*. Using this expression, 
and relying on the validity of the harmonic approx- 
imation, we find a line broadening of 0.25 eV to cor- 
respond to a temperature Tx 2000 K for the vibra- 
tional mode above. Even though this temperature is 
likely to be overestimated by the harmonic approx- 
imation, our result suggests that other vibrational 
modes contribute significantly to the line broaden- 
ing. Moreover, substantial line broadening could re- 
sult from structural transitions between different 
isomers of the n=8 atom structures which are very 
close in energy [ 15-l 8 1. 

In conclusion, we have calculated the equilibrium 
structure and collective electronic excitations and 
their damping in small Na, and Li, clusters. We have 
used the local density approximation to describe the 
ground state properties of these systems, and the 
random phase approximation for the electronic ex- 
citations. We have discussed the collective excita- 
tions in the first two closed-shell clusters with n = 2, 
8 atoms in detail. Our results indicate that the cou- 
pling of electronic levels to vibrational degrees of 
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freedom accounts quantitatively for the observed 
width of the collective electronic excitations in alkali 
dimers. More calculations are necessary to address 
the damping mechanism of the collective electronic 
excitations in Lia and Na,. 

We acknowledge useful discussions with Sean Y. 
Li. This research was supported by the National Sci- 
ence Foundation under Grants Nos. PHY-8920927 
and PHY-90- 17077. 
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