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Thermodynamics of finite magnetic two-isomer systems
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We use Monte Carlo simulations to investigate the thermodynamical behavior of aggregates
consisting of few superparamagnetic particles in a colloidal suspension. The potential energy
surface of this classical two-isomer system with a stable and a metastable “ring” and “chain”
configuration is tunable by an external magnetic field and temperature. We determine the complex
“phase diagram” of this system and analyze thermodynamically the nature of the transition
between the ring and the chain “phase.” €999 American Institute of Physics.
[S0021-960629)51747-9

I. INTRODUCTION dipole interaction has a nontrivial spatial dependence.

We will show that the system exhibits a phase transition
betweentwo ordered phases, one magnetic and the other
nonmagnetic, as well as phase transitions between these or-

Simal sysiems can exbit well-defied transtions that Gouidiered Phases and a disordered phase. Whereas the syster i
y not susceptible to small magnetic fields, it shows a strong

be_ mterprete_d as a 5|gnatur_e of phas_e _trgn_smons Wh'Chparamagnetic response when exposed to larger magnetic
strictly speaking, are well defined only in infinite systems. .
. - fields.
So far, reproducible features of the specific heat have been
interpreted as indicators of “melting” transitions in small
rare gas clusters* While most of the computational studies . MODEL
of cluster thermodynamics have considered only one external
variable, namely either the temperature or the energy,

With progressing miniaturization of devictshere is a
growing interest in the thermodynamical behavior of finite-

h Our model system consists of six spherical magnetite
. 5 t er;‘?articles with a diameter af=200 A and a large permanent
is only one study by Chengt al,”> where the pressurp magnetic momento=1.68<1C° ug. The potential energy
entered as a second variable. E, of this system in the external fielB,; consists of the

- Here, we mv_estlgate the thermodynamical behaV|or_ of 4nteraction between each particieand the applied field,
finite system which is also controlled hiwo external vari- given by u;= — s X By, and the pair-wise interaction be-
ables, namely the temperatufeand the magnetic fielBex:  (een the Iparticlleis ar?g’j given by

The system of interest consists of few near-spherical, super-

paramagnetic particles with a diameter-fl0—500 A in a Ui = (/T X g = 3(mi X T i) (XT3 ]

colloidal suspension. Such systems, covered by a thin surfac-

tant layer, are readily available in macroscopic quantities, are te ex;{ T ‘7) —exp< U hij— ‘7) . (1)
called ferrofluids, and are known to form complex labyrfnth p 2p

or branched strgcturésas many-particle systems, whereasrhe first term in Eq(1) is the magnetic dipole—dipole inter-
the only stable isomers for systems with few particles (- 5cion energy. The second term describes a nonmagnetic in-
<14) are the “ring” and the “chain. _ _teraction between the surfactant covered tops in a ferrofluid
The existence of two environmental variables, yet stilly,5; js repulsive at short range and attractive at long rdnge.
only two isomer states, gives rise to a rich thermodynamiGye note that the most significant part of this interaction,
behavior, as compared to that of other small clusters such gs,i-h we describe by a Morse-type potential with param-
the noble gas clustefs. This classical, externally tunable giarse—0 121 eV anch=2.5 A, is the short-range repulsion,
finite two-isomer system is quite different from finite sSpin gjnce even at equilibrium distance the attractive part does not
lattices, vyheég magnetic |nt.eract|ops between fixed sites arg ceed 10% of the dipole—dipole attraction. The thermal
parametrized:” The magnetic tops in our system are free t0gqjiliprium structures of small clusters are either rings or
move in three-dimensional space and their magnetic d'pOIeEhains, which can be easily distinguished by their mean mag-
netic moment( ).
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where 8= (kgT) ~* and where the field.,, is aligned with @ © ® « £
the z-axis. The pre-exponential factor addresses the fact thas 05 05- 08¢ of @
each particle has three rotational and three center-of-masz -O‘G—T 06- " 08+ . “3 10
degrees of freedom. The key quantities are the formatiorw-07- R R
i oS = -
enthalpy of the isolated syster; E,<Ju”' Ep+ 1:Bexts 3 g o009 3 3 900 3 g o809
and thez-component of the total magnetic moment of the My My (man) My by max) e He e 103

aggregateu,, both of which are functions of andB,,;. E*
is the appropriate thermodynamic potential describing thesG. 1. Monte Carlo results for the probability to find an aggregate in a state

present system; its definition is analogous to the enthalpy ofith its magnetic moment in the field directiqn, and potential energg, .
a (p,V,T)-ensemble The individual contour plots show our results for the temperafu#50 K

: . . he field val Bex= Beu=4 Bex= T
We studied the thermodynamical behavior of the systerr?ltt e field valueda Be=0 G, (b) Bey=40 G, (0) Bex—60 G, and

. - ; =450 K at the field valueqd) Be,=0 G, (€) B¢, =40 G, (f) B, =60 G.
in a set of 32 extensive Metropolis Monte Carlo
simulationst® each of which consisted of»610° steps. We

e hi 11,12 L : o
used the multiple histogram method of Ferrenbergl. cannot be distinguished easily from rings in the absence of a
to combine the results of all simulations and to calculate thQ|e|d In the zero field, chains have no orientational prefer-

normalized density of statgg E*, u,) with a minimized sta-  ence and thezcomponent of their magnetic moment
tistical error'® In order to cover the 6N-dimensional configu- w,! n* averages to zero. Of course, this is not a serious
ration space properly and to eliminate any potential depencomplication within our simulations but in an experimental
dencies on the starting configurations, we based our daigtyation the measurement of one component of the magnetic
analysis on simulations performed withandT close to the  momentu would not be sufficient to determine the dominant

“phase boundary” between rings and chains. structure of an ensemble of clusters.
With the density of statep(E*,u,) at hand, the parti- Chains—unlike rings—do align with a nonzero magnetic
tion functionZ can be rewritten as field and, especially at low temperatures, show a magnetic
momentu,/ul®~1 in the field direction.
Z(Bext,T)=(27T,3)_6N/2f dE* du, p(E*, 1p) The relative stability of an aggregate is reflected in its
potential energye,. We findE, to increasgcorresponding
xXexp(— B(E* = 1Bex), (3)  to decreasing stabiliywith increasing temperature. On the

and the field- and temperature-dependence of the expectati@i€’ hand, applying a magnetic field destabilizes rings in
value of any functiorF(E*, »,) can be obtained from favor of _f|eld-al|gned chains. With increasing field, chains
are confined to a gradually decreasing fraction of the con-

(F(E*,p2;Bext, T)) figurational space which sharpens their distribution in the
(Ep.u,) subspace, as seen when comparing Figa—1(c)
~2 Bou T) | i, | B F(E* )p(E% 0 and Figs. 1c)-1().
Under all conditions, we find two more or less pro-
X exp(— B(E* — u,Bex)). nounced local maxima in the probability distributiéy cor-

responding to a ring with 8 u,/u)'*<1, and a chain with

0<p,/uy™<1. At zero field we observe a predominant oc-
cupation of the more stable ring state. Due to the relatively
In order to obtain a rough idea of the stable and metasmall energy difference with respect to the less favorable
stable states of the system, we plotted in Fig. 1 the probabilehain AEE’/Nz(Egha'”— E,"9)/N=0.06 eV, both states be-
ity of finding the aggregate in a state with potential energycome more evenly occupied at higher temperatures. At fields
E, and total magnetic moment in the field directiop. This  as low asBe,=40 G, the energy difference between chains
is the projection of the probability to find the system in aand rings drops significantly mEg'/N:o.oz eV. As seen in
specific state in the high-dimensional configuration spacéig. 1(b), this results in an equal occupation of both states
onto the €,,u,) subspace. High probability regions in this even at low temperatures. At the much higher field value
subspace indicate not only the energetic preference of thB.,= 60 G, chains are favored with respect to the rings by a
corresponding states, but also their entropic preference dumnsiderable amount of energ&E,‘;’/N= —0.2 eV. This
to a large associated phase space volume. strongly suppresses the occurrence of rings, as seen in Figs.
Rings always have an absolute magnetic momenti(c) and XIf).
|/ ™ that is close to zero. Consequently, the A first-order phase transition in an infinite system can be
z-component of the magnetic moment of rings is also neaidentified by a discontinuous change of the energy at the
zero, as seen in Fig. 1. Even though the absolute magnetaitical point.
moment|w/u™® of chains is close to 1, these aggregates In corresponding finite systems, this critical point ex-

IV. RESULTS
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pands to a “critical region.” Even though the energy (@)go

changes continuously in the finite system, such a transition 70 0.25
may still be classified as a first-order transition or a higher- 60 0.24
order phase transition, like in the work of Proykova and . 0.23 o
Berry* due to its physical similarity to those in infinite sys- G40 0.22 '§
tems. We investigated the nature of the transition in our sys- ol 0.21 =
tem by inspecting the temperature dependence of the bimo- 5% 0.20 =
dal distribution, shown in Fig. 1, following a procedure 10 g'i':
outlined in Refs. 15—17. This analysis revealed the transition :

between rings and chains, which is a transition between two
ordered phases being “first-order like”. We have to empha- (b)
size that this classification is drawn by analogy. Unlike other
small systems like those considered by Chengl.” it does

not make sense to ask if the “transition” observed would

become a true first-order phase transition in the limit of large
particle numbers. Here, we discuss explicitly a finite mag-
netic two-isomer system. With increasing system size the

number of different isomer&omplex labyrintf or branched 019 1/ / ~ ----B=50G
structured will increase dramatically and features like the - ——-B=80G
bimodal probability distribution will probably disappear. For 0-1750 150 250 350 450
this reason, methods like finite-size scaling cannot be applied TIK]

for the system under consideration. The ring—chain transition

observed for small ferrofluid clusters will definitely disap- FIG. 2. Specific heat per partict of the system as a function of tempera-

pear for larger clusters. Thus, thaditional way to classify ture T and_ the external ma_gnetic fieRL,,. Results for the entire tempera_l—
hase transitions bv studving the behavior of the probabilit ture and field range investigated here are presented as a contour (@pt in

p. - . y . ying P . yl’he temperature dependencecgffor selected values d.,, is presented in

distribution as a function ol cannot be used here. There is ().

also some experimental evidence that this way might not be

suitable for other clusters types, e.g., sodium clusters which

exhibit a transition from molecular-like to jellium-like clus- —d(E/N)/dT, where the total energy is given bf

ters with increasing particle numb®.In such cases it is —(6/2)NkgT+E,. Correspondingly, we define the mag-
easy to imagine that the type of phase transition as extractggl . susceptibil?ty per particle ag=d(,/N)/dBey. These

from the probability function changes from first to higher response functions are related to the fluctuation& pénd
order by going fronN to N+1 or N— 1. The phase behavior w, by
z

of a small sodium cluster might be more similar to that of a 6N
large argon cluster than to that of a large sodium cluster. _ 2, /=2 2
There is apparently a growing need for a systematic defini- B 7 KeTkeS (E=(E) )}/ N, “
tion of phase transitions in finite systems. Recently, an at- 5 5
tempt to solve this problem has been made by analyzing the X=[B(uz) = (m2))IN. (5)
distribution of zeros of the canonical partition function in the As already mentioned, transitions in finite systems are
complex temperature plart@. gradual® Still, it makes physical sense to compare them to

Figure 1 shows not only the stable and metastable statgshase transitions in infinite systems. There, first-order phase
under the given conditions, but also the states found alongansitions are associated with a diverging specific heat at the
the preferential transition pathway between a ring and ghase boundary. In th& — B, “phase diagram” in Fig.
chain in the projectedH,,, u,) subspace. During this transi- 2(a), a well-defined yet not sharp “crest line” separates the
tion each aggregate must undergeoatinuouschange o,  ring and the chain phase. Similar phase diagrams, albeit for
andu,. The favored transition pathways are then associatedonmagnetic systems, have been discussed in Refs. 3 and 20.
with high-probability trajectories in theH,u,) subspace. Our results illustrate how the critical magnetic field for the
The value of the activation barritzérEf)ICt is then given by the ring—chain transition decreases with increasing temperature.
smallest increase dE, along the optimum transition path At high temperatures, the “line” separating the phases
which connects the stable and metastable ring and chain i®roadens significantly into a region where rings and chains
lands. In our simulations we found that the activation barriercoexist.
always occurred af,/uy®~0.22. Consequently, we con- The line plot in Fig. 2Zb) is the respective constant-field
cluded that the field dependence of the activation energgut through the contour plot in Fig(&. As can be seen in
follows the expression AE‘;‘CYBEX,)=AE3°‘(Bext= 0) Fig. 2(b), there is no transition from chains to rings, indi-
—0.22u0®Boy:. cated by a peak ing at fields exceeding 50 G which is close

In order to quantitatively describe the phase transitiongo the critical field value at which chains become favored
occurring in this system, we focused our attention on theover rings at zero temperature. At fielBg,<40 G, on the
specific heat and the magnetic susceptibility. The specifiother hand, there is no region where chains would be ther-
heat per particle in a canonical ensemble is givencgy modynamically preferred over the rings, and we observe
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(@)go with increasing temperature. Snapshots from our simulations
70 . 0.024 at temperatures in the melting region indicate that rings and
60l chains 0.021 chains break up to form a number of different isomers.
50 % 0.018 Single particles leave the chain and ring structures and attach

T 40 - 0.015 3 at arbitrary positions. We interpret this as the onset of disor-
'5'30 0013 dering or melting. For comp'utat.ional reasons the dissociation
- g-ggz - process has not been studied in detail. _

10 rings T 0'003 Since the transition probability between both states is
: extremely low at low temperatures and fields, magnetically

050 150 250 350 450

distinguishable metastable states can be frozen. A chain con-

(bg TIK] figuration, which is metastable in zero field, can be prepared
.08 by first annealing the system f6=350 K and subsequent
‘; —_— ::igg guenching in a strong field. Similarly a frozen-in ring con-
_ ooen -——-B=50G figuration is unlikely to transform to a chain at low tempera-
‘© | —=- B=53G tures, unless exposed to very large fields. Thus, the above-
E 0.04 ll N described phase diagrams can be used to externally
= i\ manipulate the self-assembly of magnetic nanostructures.
002 |4 \ In conclusion, we have studied the thermodynamic be-
}.\ N\ havior of a finite two-isomer system, which is externally tun-
0.00 L Sl e aees] able by two independent variables, namely the temperature
50 150 2‘_5|_°[K] 350 450 and the magnetic field. Much of the behavior encountered in

this system such as transitions between different states has a

FIG. 3. Magnetic susceptibility per particieof the system as a function of Well-defined counterpart in infinite systems. The reason for
temperatureT and the external magnetic fieBl,. Results for the entire  the encountered richness of the thermodynamic and magnetic
_temperature and field range investigated here are presented as a contour F}B?‘operties is the relative ease of structural transformations
in (a). The temperature dependenceyofor selected values dB.,, is pre- . . . .
sented inb). which is typical for finite systems. Consequently, we expect

other finite magnetic systems, e.g., small transition metal

clusters, where a small number of structural isomers with
only a gradual transition from the ring phase into the coex-SUbSt"’mt'.aIIy d|ﬁerent magnetic moments could coexiso
istence region with increasing temperature. The specific heé?”ow this behavior. Moreover, we expect that our results
behavior at zero field resembles that of a small system with §an a'SF’ be transferred to nano.crystalllne material, SUCh. as
gradualmelting transition close to 150 K and an onset of magne’ug c!usters er?capsulated n t_he supercages Of zeolites,
disorder at about 350 K As seen in Fig. &), the critical Wh"?h wil "k?'-‘( retain some of the intriguing properties of
temperature and the width of the transition region can béhe isolated finite systems.
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