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Thermodynamics of finite magnetic two-isomer systems
Peter Borrmann, Heinrich Stamerjohanns,a) and Eberhard R. Hilf
Department of Physics of the University Oldenburg, D-26111 Oldenburg, Germany
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~Received 28 June 1999; accepted 23 September 1999!

We use Monte Carlo simulations to investigate the thermodynamical behavior of aggregates
consisting of few superparamagnetic particles in a colloidal suspension. The potential energy
surface of this classical two-isomer system with a stable and a metastable ‘‘ring’’ and ‘‘chain’’
configuration is tunable by an external magnetic field and temperature. We determine the complex
‘‘phase diagram’’ of this system and analyze thermodynamically the nature of the transition
between the ring and the chain ‘‘phase.’’ ©1999 American Institute of Physics.
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I. INTRODUCTION

With progressing miniaturization of devices,1 there is a
growing interest in the thermodynamical behavior of fini
size systems. A central question in this respect is, whe
small systems can exhibit well-defined transitions that co
be interpreted as a signature of phase transitions wh
strictly speaking, are well defined only in infinite system2

So far, reproducible features of the specific heat have b
interpreted as indicators of ‘‘melting’’ transitions in sma
rare gas clusters.3,4 While most of the computational studie
of cluster thermodynamics have considered only one exte
variable, namely either the temperature or the energy, th
is only one study by Chenget al.,5 where the pressurep
entered as a second variable.

Here, we investigate the thermodynamical behavior o
finite system which is also controlled bytwo external vari-
ables, namely the temperatureT and the magnetic fieldBext.
The system of interest consists of few near-spherical, su
paramagnetic particles with a diameter of'10– 500 Å in a
colloidal suspension. Such systems, covered by a thin su
tant layer, are readily available in macroscopic quantities,
called ferrofluids, and are known to form complex labyrint6

or branched structures7 as many-particle systems, where
the only stable isomers for systems with few particlesN
,14) are the ‘‘ring’’ and the ‘‘chain.’’8

The existence of two environmental variables, yet s
only two isomer states, gives rise to a rich thermodynam
behavior, as compared to that of other small clusters suc
the noble gas clusters.3,4 This classical, externally tunabl
finite two-isomer system is quite different from finite sp
lattices, where magnetic interactions between fixed sites
parametrized.2,9 The magnetic tops in our system are free
move in three-dimensional space and their magnetic dipo
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dipole interaction has a nontrivial spatial dependence.
We will show that the system exhibits a phase transit

betweentwo ordered phases, one magnetic and the ot
nonmagnetic, as well as phase transitions between thes
dered phases and a disordered phase. Whereas the sys
not susceptible to small magnetic fields, it shows a stro
paramagnetic response when exposed to larger mag
fields.

II. MODEL

Our model system consists of six spherical magne
particles with a diameter ofs5200 Å and a large permanen
magnetic momentm051.683105 mB . The potential energy
Ep of this system in the external fieldBext consists of the
interaction between each particlei and the applied field,
given by ui52mi3Bext, and the pair-wise interaction be
tween the particlesi and j, given by8

ui j 5~m0
2/r i j

3 !@m̂ i3m̂ j23~m̂ i3 r̂ i j !~m̂ j3 r̂ i j !#

1eFexpS 2
r i j 2s

r D2expS 2
r i j 2s

2r D G . ~1!

The first term in Eq.~1! is the magnetic dipole–dipole inter
action energy. The second term describes a nonmagneti
teraction between the surfactant covered tops in a ferrofl
that is repulsive at short range and attractive at long ran7

We note that the most significant part of this interactio
which we describe by a Morse-type potential with para
eterse50.121 eV andr52.5 Å, is the short-range repulsion
since even at equilibrium distance the attractive part does
exceed 10% of the dipole–dipole attraction. The therm
equilibrium structures of small clusters are either rings
chains, which can be easily distinguished by their mean m
netic moment̂ m&.

III. NUMERICAL METHOD

The canonical partition function, from which all thermo
dynamical quantities can be derived, is given by

il:

Re-
9 © 1999 American Institute of Physics
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Z~Bext,T!5~2pb!26N/2E F)
i 51

N

dxi df i du i dc i G
3expS 2bS (

i , j

N

ui j 2(
i

N

m i ,zBextD D , ~2!

whereb5(kBT)21 and where the fieldBext is aligned with
the z-axis. The pre-exponential factor addresses the fact
each particle has three rotational and three center-of-m
degrees of freedom. The key quantities are the forma
enthalpy of the isolated system,E* 5( i , jui j 5Ep1mzBext,
and thez-component of the total magnetic moment of t
aggregate,mz , both of which are functions ofT andBext. E*
is the appropriate thermodynamic potential describing
present system; its definition is analogous to the enthalp
a ~p,V,T!-ensemble.

We studied the thermodynamical behavior of the syst
in a set of 32 extensive Metropolis Monte Car
simulations,10 each of which consisted of 63109 steps. We
used the multiple histogram method of Ferrenberget al.11,12

to combine the results of all simulations and to calculate
normalized density of statesr(E* ,mz) with a minimized sta-
tistical error.13 In order to cover the 6N-dimensional config
ration space properly and to eliminate any potential dep
dencies on the starting configurations, we based our
analysis on simulations performed withB andT close to the
‘‘phase boundary’’ between rings and chains.

With the density of statesr(E* ,mz) at hand, the parti-
tion functionZ can be rewritten as

Z~Bext,T!5~2pb!26N/2E dE* dmz r~E* ,mz!

3exp~2b~E* 2mzBext!!, ~3!

and the field- and temperature-dependence of the expect
value of any functionF(E* ,mz) can be obtained from

^F~E* ,mz ;Bext,T!&

5Z21~Bext,T!E dmzE dE* F~E* ,mz!r~E* ,mz!

3exp~2b~E* 2mzBext!!.

IV. RESULTS

In order to obtain a rough idea of the stable and me
stable states of the system, we plotted in Fig. 1 the proba
ity of finding the aggregate in a state with potential ene
Ep and total magnetic moment in the field directionmz . This
is the projection of the probability to find the system in
specific state in the high-dimensional configuration sp
onto the (Ep ,mz) subspace. High probability regions in th
subspace indicate not only the energetic preference of
corresponding states, but also their entropic preference
to a large associated phase space volume.

Rings always have an absolute magnetic mom
um/mmaxu that is close to zero. Consequently, t
z-component of the magnetic moment of rings is also n
zero, as seen in Fig. 1. Even though the absolute magn
momentum/mmaxu of chains is close to 1, these aggrega
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cannot be distinguished easily from rings in the absence
field. In the zero field, chains have no orientational pref
ence and thez-component of their magnetic momen
mz /mz

max averages to zero. Of course, this is not a serio
complication within our simulations but in an experimen
situation the measurement of one component of the magn
momentm would not be sufficient to determine the domina
structure of an ensemble of clusters.

Chains—unlike rings—do align with a nonzero magne
field and, especially at low temperatures, show a magn
momentmz /mz

max'1 in the field direction.
The relative stability of an aggregate is reflected in

potential energyEp . We findEp to increase~corresponding
to decreasing stability! with increasing temperature. On th
other hand, applying a magnetic field destabilizes rings
favor of field-aligned chains. With increasing field, chai
are confined to a gradually decreasing fraction of the c
figurational space which sharpens their distribution in
(Ep ,mz) subspace, as seen when comparing Figs. 1~a!–1~c!
and Figs. 1~d!–1~f!.

Under all conditions, we find two more or less pr
nounced local maxima in the probability distributionP, cor-
responding to a ring with 0&mz /mz

max!1, and a chain with
0!mz /mz

max&1. At zero field we observe a predominant o
cupation of the more stable ring state. Due to the relativ
small energy difference with respect to the less favora
chain DEp

cr/N5(Ep
chain2Ep

ring)/N50.06 eV, both states be
come more evenly occupied at higher temperatures. At fie
as low asBext540 G, the energy difference between chai
and rings drops significantly toDEp

cr/N50.02 eV. As seen in
Fig. 1~b!, this results in an equal occupation of both sta
even at low temperatures. At the much higher field va
Bext560 G, chains are favored with respect to the rings b
considerable amount of energyDEp

cr/N520.2 eV. This
strongly suppresses the occurrence of rings, as seen in
1~c! and 1~f!.

A first-order phase transition in an infinite system can
identified by a discontinuous change of the energy at
critical point.

In corresponding finite systems, this critical point e

FIG. 1. Monte Carlo results for the probability to find an aggregate in a s
with its magnetic moment in the field directionmz and potential energyEp .
The individual contour plots show our results for the temperatureT5250 K
at the field values~a! Bext50 G, ~b! Bext540 G, ~c! Bext560 G, andT
5450 K at the field values,~d! Bext50 G, ~e! Bext540 G, ~f! Bext560 G.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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pands to a ‘‘critical region.’’ Even though the energ
changes continuously in the finite system, such a transi
may still be classified as a first-order transition or a high
order phase transition, like in the work of Proykova a
Berry,14 due to its physical similarity to those in infinite sy
tems. We investigated the nature of the transition in our s
tem by inspecting the temperature dependence of the b
dal distribution, shown in Fig. 1, following a procedu
outlined in Refs. 15–17. This analysis revealed the transi
between rings and chains, which is a transition between
ordered phases being ‘‘first-order like’’. We have to emph
size that this classification is drawn by analogy. Unlike oth
small systems like those considered by Chenget al.,5 it does
not make sense to ask if the ‘‘transition’’ observed wou
become a true first-order phase transition in the limit of la
particle numbers. Here, we discuss explicitly a finite ma
netic two-isomer system. With increasing system size
number of different isomers~complex labyrinth6 or branched
structures7! will increase dramatically and features like th
bimodal probability distribution will probably disappear. F
this reason, methods like finite-size scaling cannot be app
for the system under consideration. The ring–chain transi
observed for small ferrofluid clusters will definitely disa
pear for larger clusters. Thus, thetraditional way to classify
phase transitions by studying the behavior of the probab
distribution as a function ofN cannot be used here. There
also some experimental evidence that this way might no
suitable for other clusters types, e.g., sodium clusters wh
exhibit a transition from molecular-like to jellium-like clus
ters with increasing particle number.18 In such cases it is
easy to imagine that the type of phase transition as extra
from the probability function changes from first to high
order by going fromN to N11 or N21. The phase behavio
of a small sodium cluster might be more similar to that o
large argon cluster than to that of a large sodium clus
There is apparently a growing need for a systematic de
tion of phase transitions in finite systems. Recently, an
tempt to solve this problem has been made by analyzing
distribution of zeros of the canonical partition function in t
complex temperature plane.19

Figure 1 shows not only the stable and metastable st
under the given conditions, but also the states found al
the preferential transition pathway between a ring and
chain in the projected (Ep ,mz) subspace. During this trans
tion each aggregate must undergo acontinuouschange ofEp

andmz . The favored transition pathways are then associa
with high-probability trajectories in the (Ep ,mz) subspace.
The value of the activation barrierDEp

act is then given by the
smallest increase ofEp along the optimum transition pat
which connects the stable and metastable ring and chai
lands. In our simulations we found that the activation barr
always occurred atmz /mz

max'0.22. Consequently, we con
cluded that the field dependence of the activation ene
follows the expression DEp

act(Bext)5DEp
act(Bext50)

20.22mz
maxBext.

In order to quantitatively describe the phase transitio
occurring in this system, we focused our attention on
specific heat and the magnetic susceptibility. The spec
heat per particle in a canonical ensemble is given bycB
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5d^E/N&/dT, where the total energy is given byE
5(6/2)NkBT1Ep . Correspondingly, we define the mag
netic susceptibility per particle asx5d^mz /N&/dBext. These
response functions are related to the fluctuations ofEp and
mz by

cB5F6N

2
kB1kBb2~^E2&2^E&2!G Y N, ~4!

x5@b~^mz
2&2^mz&

2!#/N. ~5!

As already mentioned, transitions in finite systems
gradual.2 Still, it makes physical sense to compare them
phase transitions in infinite systems. There, first-order ph
transitions are associated with a diverging specific heat at
phase boundary. In theT2Bext ‘‘phase diagram’’ in Fig.
2~a!, a well-defined yet not sharp ‘‘crest line’’ separates t
ring and the chain phase. Similar phase diagrams, albei
nonmagnetic systems, have been discussed in Refs. 3 an
Our results illustrate how the critical magnetic field for th
ring–chain transition decreases with increasing temperat
At high temperatures, the ‘‘line’’ separating the phas
broadens significantly into a region where rings and cha
coexist.

The line plot in Fig. 2~b! is the respective constant-fiel
cut through the contour plot in Fig. 2~a!. As can be seen in
Fig. 2~b!, there is no transition from chains to rings, ind
cated by a peak incB at fields exceeding 50 G which is clos
to the critical field value at which chains become favor
over rings at zero temperature. At fieldsBext!40 G, on the
other hand, there is no region where chains would be th
modynamically preferred over the rings, and we obse

FIG. 2. Specific heat per particlecB of the system as a function of tempera
ture T and the external magnetic fieldBext . Results for the entire tempera
ture and field range investigated here are presented as a contour plot i~a!.
The temperature dependence ofcB for selected values ofBext is presented in
~b!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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only a gradual transition from the ring phase into the co
istence region with increasing temperature. The specific h
behavior at zero field resembles that of a small system wi
gradualmelting transition close to 150 K and an onset
disorder at about 350 K.21 As seen in Fig. 2~b!, the critical
temperature and the width of the transition region can
externally tuned by the second thermodynamical varia
the external magnetic fieldBext.

Figure 3 displays the magnetic susceptibilityx, another
prominent indicator of phase transitions in magnetic syste
as a function of T andBext. Like the specific heat in Fig
2~a!, the crest line inx separates the chain phase from t
ring phase in thisT2Bext phase diagram. Moreover, Fig.
reveals the fundamentally different magnetic character
these phases. Whereas the system is nonmagnetic in the
phase found below 40 G, it behaves like a ferromagnet c
sisting of Langevin paramagnets in the chain phase at hig
fields. The transition between these states is again grad
The line plot in Fig. 3~b! is the respective constant-field c
through the contour plot in Fig. 3~a!. When the system is in
the chain phase, it behaves like a paramagnet obeying
Curie–Weiss law, as can be seen in Fig. 3~b!.22

At relatively low temperatures, where the aggregates
intact, the expectation value of the magnetic moment fi
increases with increasing magnetic fields. This is due to
gradual conversion from nonmagnetic rings to paramagn
chains. According to Fig. 3~b!, this uncommon behavior per
sists up toT5200 K atBext540 G. This trend is reversed a
higher temperatures, where all aggregates eventually f
ment into single paramagnetic tops. In this temperature ra
the magnetic moment as well as the susceptibility decre

FIG. 3. Magnetic susceptibility per particlex of the system as a function o
temperatureT and the external magnetic fieldBext . Results for the entire
temperature and field range investigated here are presented as a conto
in ~a!. The temperature dependence ofx for selected values ofBext is pre-
sented in~b!.
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with increasing temperature. Snapshots from our simulati
at temperatures in the melting region indicate that rings
chains break up to form a number of different isome
Single particles leave the chain and ring structures and at
at arbitrary positions. We interpret this as the onset of dis
dering or melting. For computational reasons the dissocia
process has not been studied in detail.

Since the transition probability between both states
extremely low at low temperatures and fields, magnetica
distinguishable metastable states can be frozen. A chain
figuration, which is metastable in zero field, can be prepa
by first annealing the system toT*350 K and subsequen
quenching in a strong field. Similarly a frozen-in ring co
figuration is unlikely to transform to a chain at low temper
tures, unless exposed to very large fields. Thus, the ab
described phase diagrams can be used to extern
manipulate the self-assembly of magnetic nanostructures

In conclusion, we have studied the thermodynamic
havior of a finite two-isomer system, which is externally tu
able by two independent variables, namely the tempera
and the magnetic field. Much of the behavior encountered
this system such as transitions between different states h
well-defined counterpart in infinite systems. The reason
the encountered richness of the thermodynamic and magn
properties is the relative ease of structural transformati
which is typical for finite systems. Consequently, we exp
other finite magnetic systems, e.g., small transition me
clusters, where a small number of structural isomers w
substantially different magnetic moments could coexist,23 to
follow this behavior. Moreover, we expect that our resu
can also be transferred to nanocrystalline material, such
magnetic clusters encapsulated in the supercages of zeo
which will likely retain some of the intriguing properties o
the isolated finite systems.
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