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Electronic structure of single-wall, multiwall, and filled carbon nanotubes

D. Östling, D. Tománek,* and A. Rose´n
Department of Physics, Go¨teborg University and Chalmers University of Technology, S-412 96 Go¨teborg, Sweden

~Received 6 January 1997!

We determine the electronic structure of single-wall, multiwall, and filled carbon nanotubes using the
local-density-functional formalism. In order to handle these extremely inhomogeneous systems of nested
graphene cylinders with 103–104 valence electrons, we adopt a technique that discretizes the eigenvalue
problem on a grid and yields simultaneously all occupied and unoccupied states. We apply this formalism to
nanotubes, where the ionic background can be described by infinitely thin structureless cylindrical walls, and
the electron distribution is subsequently obtained in a self-consistent manner. Comparison with parametrized
calculations, which consider explicitly the atomic positions, proves that the essential features of the electronic
structure in these systems do not depend on the exact atomic positions.@S0163-1829~97!07220-2#
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I. INTRODUCTION

Carbon nanotubes, first discovered as a by-product of
bon fullerene production,1 have attracted significant attentio
recently as well-defined, stable, and rigid one-dimensio
systems.2,3 Different aspects of the highly interdisciplinar
field of carbon fullerenes and nanotubes have been discu
in a recent book by Dresselhaus, Dresselhaus, and Eklu4

and in a recent review by Ebbesen.5 As in the case of the
discovery6 and bulk production technique7 for the related
C60 fullerene molecule, the discovery of nanotubes was v
serendipitous. Multiwall nanotubes have been first found
the buildup occurring on the cathode of the carbon arc tha
operated in a helium atmosphere to produce fullerenes s
as C60. Their outer diameter varies typically between 20 a
200 Å, while the inner diameter is typically of the order
10–30 Å. The interlayer distance is'3.4 Å, corresponding
to the interlayer distance of graphite. Single-wall nanotub
on the other hand, have been found to form spontaneo
whenever the graphite material used in the arc8–10or in laser
vaporization2 was enriched by traces of transition meta
such as Co or Ni, acting as a catalyst. Single-wall nanotu
have a much narrower radius distribution, centered aro
'12–14 Å.8–10,2They grow up to 102 mm long, resulting in
a high aspect~length over diameter! ratio of up to'105.

Subsequent to the successful formation of endohe
fullerenes by encapsulating metal atoms in carbon cage11

was a synthesis of metal-filled nanotubes. Owing to their l
melting point, Pb and Bi were the first elements observed
fill the core of the nanotubes by capillary action.12,13 Later
on, nanotubes filled with Y,14 Mn,15 and Gd~Ref. 16! were
synthesized, albeit at low yield, directly in the carbon a
Significant progress resulted from two further technologi
advances. Tsanget al.17 succeeded in opening nanotub
with nitric acid and filling them with Ni, Co, Fe, and U ion
from the solution. Guerret-Pie´courtet al.18 synthesized filled
tubes directly by adding the respective metal to the electr
material used in the carbon arc. With this technique, in p
ticular the metals Cr and Gd proved to form efficiently lo
nanowires contained in nanotubes.

Theoretical studies have shown that chirality has a p
found effect on the electronic structure of isolated sing
550163-1829/97/55~20!/13980~9!/$10.00
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wall nanotubes.19,20 Parametrized calculations addressi
only the ppp interatomic interactions, which dominate th
electronic structure near the Fermi level, indicated that
achiral ‘‘armchair’’ (n,n) nanotubes4 should be metallic,
whereas all (n,m) tubes, withn2m a nonzero multiple of 3,
should be small-gap semiconductors or semimetals.19 Nano-
tubes not fitting in either category should be semiconducti
with a band gap roughly proportional to the reciprocal tu
radius.21 These findings have been found to be qualitativ
correct only in tubes with a large diameter, where thes2p
hybridization is negligible.22

In this study we turn to multiwall and metal filled nano
tubes, and discuss how their electronic structure evol
from that of single-wall nanotubes. A self-consistent calc
lation of the charge distribution in such layered systems tu
out to be very difficult, since the determination of eigensta
tends to be either numerically unstable, or fails to reprod
the interlayer states correctly.

Here we present a technique which addresses these p
lems in systems with cylindrical symmetry. Our approac
which is outlined in Sec. II, is based on a numerical meth
of Salomonson and O¨ ster,23 which was originally developed
to treat correlation effects in many-body calculations of
oms. We use this technique to treat self-consistently 13–
104 electrons in very inhomogeneous systems such as m
wall and filled nanotubes, as well as nanowires. Results
the charge density, the electrostatic potential, and the e
tronic density of states of these systems will be presente
Sec. III. Finally, in Sec. IV, we summarize our results.

II. THEORY

In the following we present the formalism to study th
electronic structure of single-wall, multiwall, and filled ca
bon nanotubes as well as nanowires. First, we introduc
very general and numerically stable technique to obtain
complete spectrum of occupied and unoccupied eigenst
of systems with cylindrical symmetry, based on theab initio
density-functional formalism. We apply this technique to t
above-mentioned systems with extreme spatial variation
the charge density, where we treat the ionic background in
13 980 © 1997 The American Physical Society
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55 13 981ELECTRONIC STRUCTURE OF SINGLE-WALL, MULTIWALL . . .
approximate way. To assess the effect of the exact io
positions, we use a parametrized linear combination
atomic orbitals technique. In the following, all expression
unless their dimension is specified, will be given in Hartr
atomic units.

A. Density-functional calculation of the complete set
of electronic eigenstates of nanotubes

We calculate the electronic structure of nanotubes us
the density-functional theory.24,25 In the electronic ground
state, the total energyE is a well-defined functional of the
total charge densityr(r ). E@r(r )# can then be obtained in
variational manner, with the constraint that the total num
of electrons be conserved, by solving self-consistently the
of Kohn-Sham equations25

@2 1
2¹21Veff~r !#c i~r !5« i c i~r !,

r~r !5(
i

occ

uc i~r !u2 . ~1!

The effective potential Veff in the local-density-
approximation~LDA ! formalism is given by

Veff~r !5Vion~r !1VH„r~r !…1Vxc„r~r !… , ~2!

whereVion is the ionic background potential,VH is the Har-
tree potential, andVxc is a local potential describing the e
fect of exchange and correlation. In the present work, we
the Gunnarsson-Lundqvist parametrization26 of Vxc .

The most satisfying approach to determining the el
tronic states of multiwall nanotubes would be to consid
their atomic structure. This could be achieved in a se
consistent manner using the LDA with a linear combinat
of atomic orbitals~LCAO! basis. However, the large numb
of carbon atoms needed to describe a long, possibly ch
nanotube makes a simplified approach more attractive. In
following, we focus on the electronic structure arising fro
the interacting 2s and 2p valence electrons of carbon, an
replace the point charges of the individual C41 ions in the
graphitic walls by two-dimensional charged ‘‘sheets’’~‘‘2D
jellium background’’! of cylindrical symmetry, with uniform
surface-charge densitys. For a graphitic honeycomb lattic
with a C–C bond length of 2.68 a.u., we obtains
510.428e/a.u.2

1. Eigenvalue problem in systems with cylindrical symmetry

The potential due to the ionic background charge of
infinitely long single-wall nanotube of radiusR is given by
Gauss’s law27 as

Vion~r !5H 22l ln~R!1c for r<R

22l ln~r !1c for r.R ,
~3!

wherel52pRs is the number of electrons per unit leng
of the nanotube, andc is an arbitrary constant. In multiwal
nanotubes the total ionic background potential is a supe
sition of potentials obtained using Eq.~3! for the individual
nanotubes of radiusR. Gauss’s law gives also a very simila
ic
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expression for the ionic background potential of an infinite
long, structureless solid wire of radiusR,

Vion~r !5H 2l@~r /R!221#22l ln~R!1c for r<R

22l ln~r !1c for r.R .
~4!

Herel is the number of electrons per unit length of the wir
and c is an arbitrary constant. The eigenfunctions of t
Kohn-Sham operator for a nanotube or nanowire of len
L ~with L@R), aligned with thez axis, can be factorized into
radial, azimuthal, and axial parts as

cnmk~r ,w,z!5
1

ApL
Rnm~r !eimwsinS kp

L
zD . ~5!

Here, n51,2,3, . . . denotes the radial quantum numb
m50,61,62, . . . the azimuthal quantum number, an
k51,2,3, . . . the axial quantum number. The physical s
nificance of (n21) is the number of radial nodes ofcnmk.
In the corresponding fashion,umu and (k21) give the num-
ber of azimuthal and longitudinal nodes ofcnmk, respec-
tively.

We now construct a cylindrical box of large but finit
length L, and align the axes of the nanotube and cylind
The discretization of the spectrum due to the finite len
L is minimized for sufficiently large values ofL. The most
challenging problem is the determination of the radial wa
function Rnm(r ), which we solve by first substituting
Rnm(r )5unm(r )/Ar . The Kohn-Sham Eq.~1! leads to a new
equation forunm(r )

F2
1

2 H ]2

]r 2
1

1

4r 2 J 1
m2

2r 2
1
k2p2

2L2
1Veff~r !Gunm~r !

5«nmk unm~r ! . ~6!

2. Numerically stable technique to solve the eigenvalue problem

A numerical solution of the differential equation~6! for
the radial functionunm(r ) using a standard point-and-sho
method28 generally fails if several classically allowed re
gions are separated by forbidden regions, which is the cas
multiwall nanotubes. To solve this differential equation, w
adopt a technique by Salomonson and O¨ ster,23 that was origi-
nally developed for atoms, to systems with cylindrical sy
metry. The objective is to determine the eigenfuncti
unm(r ) on a linear grid ofN pointsr 1 , . . . ,r N , separated by
a constant distanceh, inside the cylindrical box. To evaluat
the kinetic term in the radial Eq.~6!, we use the symmetric
five-point formula for the second-order derivative of a fun
tion unm(r ),

]2u~r !

]r 2
5

1

12h2
@2u~r22h!116u~r2h!230u~r !

116u~r1h!2u~r12h!#1O~h4! . ~7!

Substituting expression~7! into Eq. ~6! leads to a set ofN
coupled linear equations forunm(r i) that can be formulated
as an eigenvalue problem

~A1D !unm5«unm . ~8!
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Determining the eigenvectoru5@unm(r 1),unm(r 2), . . . ,unm(r N)] in Eq. ~8! is equivalent to solving Eq.~6! on the radial grid.
The matrix describing the operatorA is diagonal, with its elements given by

Aii5
m2

2r i
2 1

k2p2

2L2
1Vion~r i !1VH~r i !1Vxc~r i !, ~9!

wherei51,2, . . . ,N. D is the symmetric band matrix obtained from Eq.~7!, given by

D52
1

24h2 1
2301

1

4r 1
2 16 21 0 0 ••• 0

16 2301
1

4r 2
2 16 21 0 ••• 0

21 16 2301
1

4r 3
2 16 21 ••• 21

A A A A A � 16

0 0 0 0 21 16 2301
1

4r N
2

2 . ~10!
al

th
-
ne

y
nd

te

tia
ith
in

he
io

ine

-
m

ula-
ms,

on
the
h-
-
ults
AO
e-

ices
on

nd
in
all

cy-
nd
We requireA1D to be symmetric in order to obtain a re
eigenvalue« in Eq. ~8! and a radial eigenfunctionunm(r )
that is real and doubly differentiable everywhere inside
cylinder. The above form ofD implies that the wave func
tions vanish outside the grid, i.e., all electrons are contai
in the cylindrical box. The asymptotic behavior ofunm(r ) in
the region close to thez axis, unm(r )}r

umu11/2, has to be
enforced, while still keeping the matrixD symmetric.23 To
achieve this, we focus on the matrix elementsD11, D12,
D21, andD22. The A1D matrix can be symmetrized b
extending the radial axis to the left of the first grid point, a
using the ansatz

unm~r 0!5aFunm~r 0!

unm~r 1!
Gunm~r 1!1~12a!Funm~r 0!

unm~r 2!
Gunm~r 2!,

unm~r21!5Funm~r21!

unm~r 1!
Gunm~r 1! ~11!

for the function values at the new grid pointsr21 and r 0
preceding the first grid pointr 1. The function value ratios
occurring in Eq.~11! are determined using the appropria
asymptotic behavior ofunm(r ). The free parametera is then
chosen in such a way thatD125D21.

The last difficulty in the solution of the eigenvalue Eq.~6!
occurs due to the divergence of two terms in the differen
operator atr50. We address this problem in systems w
nonzero charge density near the cylinder axis by introduc
a very fine grid nearr50, and displacing this grid laterally
by a small distance, e.g., 0.1h. In this case, none of the
microgrid pointsr2150.1h, r 051.1h, r 152.1h, . . . coin-
cides withr50. Interpolation is then used to determine t
radial wave function and all its derivatives even in the reg
close to the cylinder axis.

We note that the total number of eigenstates is determ
by the rankN of the matricesA andD in Eq. ~8! ~that is
related to the radial grid! and not the total number of elec
trons. Consequently, this approach can be used to deter
e
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also the unoccupied states, which are the basis of calc
tions determining the collective response of these syste
e.g., using the time-dependent LDA~TDLDA ! or the LDA-
based random phase-approximation technique.

B. Parametrized linear combination of atomic orbitals
„LCAO … technique

To investigate the effect of discrete atomic positions
the electronic structure of nanotubes, we made use of
parametrized linear combination of atomic orbitals tec
nique, since the full LDA theory is too demanding on com
puter resources. It has been shown that mapping LDA res
for characteristic structures onto parameters of a LC
Hamiltonian provides a very useful and efficient way to d
termine the electronic states of carbon systems.29 The
nearest-neighbor LCAO Hamiltonian we use reads

HLCAO5(
i

(
b

e ib
0 aib

† aib

1(
i, j

(
b,b8

t ib, jb8~aib
† ajb81c.c.! . ~12!

In our notation,b and b8 refer to electronic levels of the
cluster and isolated atoms, respectively, and Roman ind
denote atomic sites. In the LCAO calculations of carb
nanotubes, we use four orbitals ofs, px , py , andpz charac-
ters on each atomic site, and Slater-Koster parameters29 for
the matrix elements of the Hamiltonian~12!.

III. RESULTS

In Fig. 1 we present results for the charge distribution a
the total potential of a hollow single-wall nanotube, a th
nanowire, a tube filled by a nanowire, and a double-w
nanotube. In these calculations, the C41 ion charges in each
nanotube wall have been smeared out into infinitely thin
lindrical walls, representing a 2D jellium background, a
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FIG. 1. Results for the self-consistent radial charge densityr(r ) and effective total potentialVeff(r ) of ~a! a hollow single-wall carbon
nanotube with radiusR53.4 Å, ~b! a solid Pb nanowire withR52.4 Å, ~c! the nanowire~b! encapsulated in the nanotube~a!, and finally
~d! a double-wall nanotube, consisting of the nanotube~a! enclosed inside a nanotube with the radiusR56.8 Å. The ionic and electronic
contributions toVeff are shown as insets in subfigures~a! and ~b!. Symbols are introduced to distinguish the different systems in
subfigures.
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only the C 2s and C 2p valence electrons have been cons
ered as active. Our description of Pb nanowires within
jellium model follows Ref. 30. We user s52.30 a.u. for the
Wigner-Seitz radius, and a valenceZ54 for Pb in the
ground-state configuration@Xe#4 f 145d106s26p2. The jellium
background charge density of Bi, which has also been fo
to fill carbon nanotubes, is only'25% higher than in Pb
Consequently, we expect qualitatively similar results
nanowires of these two elements.

It is instructive to discuss the behavior ofVeff
5Vion1Vel in terms of its ionic and electronic componen
Vion and Vel , whereVel5VH1Vxc . Since the systems w
consider are charge neutral, we findVel to show generally the
same behavior as2Vion throughout the space, causingVeff to
vanish in the vacuum region inside or outside the nanost
tures, shown in the insets of Figs. 1~a! and 1~b!.

As mentioned in Sec. II, the electronic states in syste
with cylindrical symmetry are characterized by the quant
numbersn,m, andk, where (n21) corresponds to the num
ber of radial nodes,umu corresponds to the number of az
muthal nodes, and (k21) is the number of longitudina
nodes of the wave function. In order to understand the na
of such wave functions in cylindrical symmetry better, w
first turn to analogous spherical systems, such as the60
-
e

d

r

c-

s

re

fullerene, that have been studied extensively from this po
of view.

The C60 molecule with icosahedral symmetry contains
60 atoms in equivalent sites on a hollow, spherical graph
shell. The near-spherical structure of C60 suggests represen
ing the wave functions in a spherical basis.31 Indeed, results
of self-consistent LDA calculations for C60 suggest that to a
good approximation, occupied eigenstates of C60 can be
characterized by radial and angular quantum numbers.32 The
description of C60 by a spherically symmetric hollow cag
turned out to be a very reasonable first approximation.33,34

An adequate description of further level splitting due to sy
metry reduction can be achieved using perturbation the
This approach has been used successfully to describe
~rather small! effect in C60 introduced by the reduction from
spherical to icosahedral symmetry.33 Since atomic positions
are ignored in the spherical hollow cage description of C60,
there is no direct way to distinguish the electronic sta
associated with individual interatomics andp bonds. The
distinction between thes andp statesis rather based on the
fact that the graphitic layer is a nodal layer for the nonbon
ing ppp molecular orbitals, whereas it is not a nodal lay
for the s orbitals. Correspondingly,s states can be assoc
ated with wave functions that have no radial nodes, wher



to
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FIG. 2. Total electronic density of states~DOS! of ~a! a hollow single-wall nanotube with the radiusR53.4 Å, and~b! a solid Pb
nanowire withR52.4 Å, withEF at energy zero.~c! The partial DOS with respect to the radial quantum numbern of the nanotube~a! shows
then51 (s), n52 (p), andn53 (d) bands extending above233 eV,25 eV, andEF , respectively.~d! The corresponding partial DOS
of the nanowire~b! shows thes, p, and d bands extending above221, 210, and12 eV, respectively. Symbols are introduced
distinguish the different systems in the subfigures.
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p states have a single node in the radial wave function.
angular arrangement of the wave function nodes is given
the spherical harmonics and the angular quantum num
l50,1,2,. . . . An analysis of the occupied levels of the C60
molecule shows that the levels close to the highest occu
molecular orbital are ofp type, whereas the more deep
bound states are ofs type.35

Since the interatomic bonding in the nanotubes and
C60 fullerene are very similar, we expect that a description
the C41 ions by a homogeneously charged, infinitely th
layer will also provide a valid description for the nanotub
As in the C60 molecule, we will distinguishs states with no
radial node fromp states with one radial node in th
graphene wall. This is illustrated in Fig. 2, which displa
the total and partial electronic densities of states~DOS! for
the isolated nanotube and the nanowire discussed above
in Fig. 1.

The comparison between the total DOS for the isola
nanotube in Fig. 2~a! and its decomposition into partial DO
according to the radial wave numbern in Fig. 2~c! shows an
energy-level spectrum starting 33 eV below the Fermi le
with states containing no radial nodes, establishing t
bonding originates from thes states. Thep states are much
higher in energy and closer to the Fermi level, establish
their essentially nonbonding character. None of then53
(d) band states is occupied in the ground state, but s
states are important when studying electronic excitatio
Similarly, our results for the total and partial DOS of the P
nanowire, shown in Figs. 2~b! and 2~d!, suggest that only
n51 (s) andn52 (p) states are occupied in this system

Both the nanotube and the nanowire show substructur
the DOS of eachn-decomposed subband, that is associa
with the azimuthal quantum numberm and the longitudinal
momentumk. The peaks in the partial densities of states
van Hove singularities that occur in one-dimension
systems.30 Each of these singularities is associated with
particular azimuthal quantum numberumu; singularities oc-
e
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curring at higher energies are associated with larger value
umu. We will refer back to Fig. 2 in the following, when
discussing the DOS of more complex systems, such as m
wall and filled nanotubes.

A metal filled nanotube can be viewed as an extrem
thin nanowire that is protected from oxidation by an exter
graphitic shell. This system is a near-ideal realization o
one-dimensional conductor that can be studied quantitativ
with our model description of nanowires and nanotubes.
will use our 2D jellium background approach to investiga
the evolution of the ground-state electronic structure
nanotubes due to their filling by a metal, or with increasi
number of cylindrical graphitic walls. In Fig. 3 we compa
the DOS of a Pb-filled single-wall nanotube to that of
double-wall nanotube. The former consists of a Pb nanow
with the radius of 2.4 Å inside a nanotube with a radius
3.4 Å. The total and partial DOS of this encapsulated na
wire is shown in Figs. 3~a! and 3~c!, respectively. The
double-wall nanotube consists of a 3.4-Å radius tube nes
inside a 6.8-Å radius nanotube. The total and partial DOS
this system is presented in Figs. 3~b! and 3~d!, respectively.
Note that the vertical axes in Figs. 3~c! and 3~d!, depicting
the partial DOS, have been expanded by a factor of 4
display the many subbands better.

The occupied bandwidth of the double-wall nanotub
shown in Fig. 3~b!, is very similar to that of the single-wal
nanotube of Fig. 2~a!. As in the single-wall tube, with result
shown in Fig. 2~c!, we can distinguish between occupieds
andp bands in the partial densities of states of the doub
wall nanotube, depicted in Fig. 3~d!. This result looks plau-
sible since, with an increasing number of walls, we expect
evolution of the electronic density of states toward that
graphite which also shows occupiedp ands bands.

The total and partial densities of states of the filled na
tube, shown in Figs. 3~a! and 3~c!, provide insight into the
electronic structure of this system that has not been inve
gated theoretically so far, to our knowledge. Comparis
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FIG. 3. ~a! Total electronic density of states~DOS! of an encapsulated nanowire, for a geometry defined in Fig. 1~c!, to be compared to
the DOS of its isolated components, given in Figs. 2~a! and 2~b!. ~b! Total DOS of the double-wall nanotube, defined in Fig. 1~d!. ~c!
Decomposition of the DOS in~a! into its components according to the radial quantum numbern, for n51, . . . ,5.~d! Decomposition of the
DOS in ~b! into its components according to the radial quantum numbern, for n51, . . . ,7. The DOSscale in~c! and~d! has been expande
for better viewing. Symbols are introduced to distinguish the different systems in the subfigures.
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with the results for an isolated tube in Fig. 2~c! and the
nanowire in Fig. 2~d! indicates that the nanowire states h
bridize strongly with thep band of the surrounding nanotub
in the composite system. The DOS of the encapsula
nanowire in Fig. 3~a! appears to be more irregular nearEF
than that of the double-wall nanotube in Fig. 3~b!. The com-
parison between the partial DOS of the encapsulated n
wire in Fig. 3~c! and the partial DOS of the isolated nanotu
in Fig. 2~c! and the isolated nanowire in Fig. 2~d! indicates
that the density of states of the encapsulated wire is do
nated by the nanowire states at the Fermi level.

So far, our discussion of the electronic structure of na
tubes has been based on the assumption that the
charges of the C41 ion cores in the graphene sheets a
smeared out into two-dimensional layers. Ignoring the h
eycomb structure of carbon atoms in the tubules is certa
a serious simplification that needs to be justified. In the f
lowing we will compare our results for a single-wall 2
jellium background nanotube to those based on a par
etrized four-state (s,px ,py ,pz) LCAO Hamiltonian29 which
does consider the atomic positions explicitly.

Recent experimental and theoretical evidence indica
that achiral ‘‘armchair’’ nanotubes prevail among the ca
lytically grown single-wall tubes.2 Consequently, in Fig. 4
we compare in our results for a 2D jellium backgrou
single-wall nanotube with those for a~5,5! armchair
nanotube4 with a discrete graphitic structure and the sa
radiusR53.4 Å. The lattice on the cylinder wall is periodic
with a 2.5-Å-high cylindrical unit cell containing 20 atom
The LCAO band structure along theG-X direction in the
Brillouin zone is displayed in Fig. 4~a!. The corresponding
density of states, shown in Fig. 4~b!, is to be compared to the
DOS based on the 2D jellium background model, which
reproduced in Fig. 4~c! from Fig. 2~a!.

Before attempting a more detailed comparison betw
the densities of states of the discrete and 2D jellium ba
ground tubes, we must realize that the DOS depends stro
d
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on the tube chirality.19,20 The absence of atomic structure
the 2D jellium background tubes is in some sense equiva
to averaging over all chiral angles. We will limit our follow
ing discussion to more global properties, such as the st
ture and the width of the occupied bands, the hybridizati
and the character of states in specific energy regions.

The band structure of the~5,5! armchair nanotube in Fig
4~a! is symmetric about the Fermi level close toEF . The
nonzero density of states atEF in Figs. 4~b! and 4~c! sug-
gests this nanotube to be metallic, in agreement with pre
ous results.19,20 The band structure in Fig. 4~a! shows a
grouping of states at theX point nearE522.5 eV, which
spread to a'6 eV wide band below the Fermi level. A
examination of their character revealed that all these st
originate from appp interaction and have a radial node. Th
character and width of this subband is in excellent agreem
with that of the occupiedp band in the 2D jellium back-
ground model of the nanotube in Figs. 4~a! and 2~c!. It is
gratifying to obtain such a good agreement for states clos
the Fermi level which determine the dielectric and optic
properties of these systems.

A separate band in the range220 eV,E,26 eV
evolves from levels that group near217.5 eV,E,211.0
eV at theX point. These states originate from interatom
sss, sps, pps, and ppp interactions, and haveno radial
nodes. The character of these states is the same as that
s band in the 2D jellium background tube model in Fig
4~a! and 2~c!. Comparison between Figs. 4~b! and 4~c!, how-
ever, shows that thes bandwidth of the 2D jellium back-
ground tube is'10 eV larger than that of the discrete tub
based on the LCAO calculation. This large difference can
traced back to the significantly larger degree of electron
localization, once the C41 ions are smeared out to a contin
ous positive background.

The van Hove singularities, which are typical of on
dimensional systems and dominate the density of state
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the 2D jellium background nanotube in Fig. 4~c!, are also
present in the LCAO results in Fig. 4~b!, especially near the
lower end of thes band. This means that the parametrize
LCAO technique reflects correctly the one-dimensional axi
as well as the radial and azimuthal states. We conclude t
both techniques yield electronic spectra that can be char
terized by the radial, azimuthal, and axial quantum numbe
n, m, andk, with consistent level ordering.

Finally, we investigated the degree to which our resul
would be affected if the C41 ions were smeared out into a
continuous jellium background of finite~instead of zero!
thickness. Such an approach had been used previously
describe the electronic structure of C60.

34 For the sake of
comparison, we reproduced the density of states of our 2
jellium background nanotube of Fig. 2~a! in Fig. 5~a!, and
compared it to the DOS for the corresponding thick jellium
background nanotube in Fig. 5~b!. We used the Wigner-Seitz
radiusr s51.23 a.u. of Ref. 34, that had been calibrated fo
C60, and obtained a thickness ofd51.75 Å for the hollow
cylinder describing the jellium background. The total dens
ties of states for both systems are given by the solid line
and the partial DOS corresponding ton51,2,3, and 4 by the
dashed lines in Figs. 5~a! and~b!.

Introducing the ionic background of a thick cylindrical
wall leads to a shallower self-consistent potential than in th
case of the infinitely thin wall, shown in Fig. 1~a!. This
would cause an upward shift of the electronic levels, an
increase the degree of electron delocalization, thus affecti
the occupied bandwidth with respect to the 2D jellium back
ground. To improve agreement with results of full-scal
LDA, stabilized jellium36 has been used instead of ‘‘regular’’
jellium to perform thick jellium background calculations of

FIG. 4. ~a! Band structure«(k) and~b! the total electronic den-
sity of states~DOS! of a ~5,5! ‘‘armchair’’ nanotube with the radius
R53.4 Å and discrete atomic positions, calculated using the para
etrized linear combination of atomic orbitals~LCAO! formalism of
Ref. 29.~c! Results of Fig. 2~a! for the DOS of a hollow structure-
less single-wall nanotube with the radiusR53.4 Å are reproduced
for the sake of simple comparison. Symbols are introduced to d
tinguish the different systems in the subfigures.
l
at
c-
rs

s

to

D

r
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s,

e

d
g
-

C60.
34 The stabilized jellium model36 had been introduced a

a way to correct negative surface energies in systems
high electron density~or smallr s values!, by adding a nega-
tive structureless pseudopotential to the ionic potential. T
lowering of the ionic potential especially inside the jellium
wherer s is small, leads to a reduction of the electron sp
out beyond the jellium edge. We did not consider this str
tureless pseudopotential in our calculations for an infinit
long tube in Fig. 5~b!, since for this system the divergence
the background potentialVion(r )} ln(r ) for r→` is no
longer counterbalanced by the corresponding electronic
tential in presence of the new pseudopotential.

A comparison between our results in Figs. 5~a! and 5~b!
suggests that introducing a finite-width ionic background
sults in a contraction of thes band, a factor-of-2 expansio
of thep band, and partial occupation of thed band associ-
ated withn53. The relative stabilization ofp andd states
with respect to the bottom of thes band in thick jellium is a
simple consequence of the stronger binding energy dep
dence of states with radial nodes on the radial width of
attractive region. Consequently, graphitic jellium thickne
can be used as a parameter to adjust the widths and rel
positions of these bands. Another possibility to improve
agreement between jellium calculations and more realisticab
initio results would be to introduce nonlocal corrections
the potential that would depend on the quantum number
the state, in the spirit of nonlocal Hamann-Schlu¨ter-Chiang
pseudopotentials.37

We conclude that the parameter-free 2D jellium bac
ground model is superior to the thick jellium backgrou
model, especially when describing the occupied electro
states near the Fermi level. For relatively small systems, s
as narrow single-wall nanotubes, the best way to obtain m

-

s-

FIG. 5. Total density of states~solid line! and its decomposition
into components according to the radial quantum numbern ~dashed
lines! for a hollow single-wall nanotube of radiusR53.4 Å. ~a!
Results of Fig. 2~a! for a nanotube with an infinitely thin structure
less wall are compared in~b! to results based on the approach
Ref. 34 that describe the graphitic wall by a hollow cylinder
thicknessd51.75 Å, consisting of jellium with a free-electro
sphere radiusr s51.23 a.u. Symbols are introduced to distingui
the different systems in the subfigures.
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realistic results would be to perform a self-consiste
density-functional calculation for a realistic nanotube co
taining electrons in a discrete lattice of C41 ions rather than
a near structureless positive continuum. For more comp
systems containing multiple layers, the introduction of a
jellium background model and our technique to determ
the entire electronic spectrum by straightforward diagon
ization appears to be the most viable alternative.

IV. SUMMARY

We have used theab initio local-density-functional for-
malism to study the electronic structure of a single-wall c
bon nanotube, a Pb nanowire, a nanotube ‘‘filled’’ by a
nanowire, and a double-wall nanotube. We describe ne
carbon nanotubes by smearing the C41 ion charges into 2D
jellium background cylinders representing the graphene
ers and treating the active C 2s and C 2p electrons self-
consistently. In order to handle the extremely inhomo
neous system of multiwall tubes with 103–104 electrons, we
have developed a formalism that discretizes the eigenv
problem on a grid and yields acompleteset of occupied and
unoccupied states. The self-consistent electronic structur
infinitely long nanotubes represented by the 2D jellium ba
ground model compares favorably with parametrized LCA
–
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calculations that take atomic structure into account. The e
tronic spectra of single-wall, multiwall, and filled nanotube
as well as nanowires, can be characterized by the ra
azimuthal and axial quantum numbersn, m, and k. These
quantum numbers are reflected in our results based on
self-consistent 2D jellium background model and the para
etrized LCAO technique that considers the atomic structu
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