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A combination of ab initio Density Functional and parametrized Linear Combi-
nation of Atomic Orbitals calculations is used to describe the interplay between
structural and electronic properties of single-wall, multi-wall, and bundled carbon
nanotubes. The electronic structure of cylindrical single-and multi-wall tubes with
an extremely inhomogeneous charge density is determined self-consistently using
a new technique that discretizes the eigenvalue problem on a grid and yields si-
multaneously all occupied and unoccupied states. Comparison with parametrized
calculations, which consider explicitly the atomic positions, proves that the essen-
tial features of the electronic structure in these systems can be obtained if the ionic
background is approximated by infinitely thin structureless cylindrical walls. Con-
sideration of the atomic positions is essential when describing the low-frequency
twisting motion of individual tubes within a “rope” or a multi-wall nanotubes. It is
shown that the weak, partly anisotropic inter-wall interaction may cause significant
changes in the density of states near the Fermi level in these systems.

1 Introduction

Carbon nanotubes, consisting of graphite layers wrapped into seamless cylin-
ders, have been produced in the carbon arc and by laser vaporizing graphite
1,2,3,4,5,6. Both single-wall and multi-wall systems have been observed that are
up to a fraction of a millimeter long, yet only nanometers in diameter. The
outer tube diameter varies typically between 2− 20 nm, while the inner diam-
eter is typically of the order of 1− 3 nm. The interlayer distance of ≈0.34 nm
is close to that of graphite. Absence of defects and chemical inertness sug-
gests that these molecular conductors should be ideal candidates for use as
nano-wires.

The first problem, addressed in this study, is related to the electronic
structure of nanotubes. The previous success of the jellium model describing
the electronic structure and abundance of nanometer-sized alkali clusters sug-
gests that atomic positions may not play a significant role when describing the
electronic structure of carbon nanotubes and related one-dimensional systems.

On the other hand, theoretical studies have shown that the diameter and
chirality do have a profound effect on the electronic structure of isolated single-
wall nanotubes 7,8. Parametrized calculations addressing only the ppπ inter-
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atomic interactions, which dominate the electronic structure near the Fermi
level, indicated that the achiral “armchair” (n, n) nanotubes9 should be metal-
lic, whereas all (n,m) tubes, with n −m a nonzero multiple of three, should
be small gap semiconductors or semimetals 7. Nanotubes not fitting in either
category should be semiconducting, with a band gap roughly proportional to
the reciprocal tube radius10. These findings have been confirmed in tubes with
a large diameter, where the sp3 bonding contribution is negligible 11.

As the first topic, this study addresses the adequacy of either approach
in complex systems consisting of several nanotubes. It focuses on multi-wall
and bundled nanotubes, and discusses how the electronic structure of these
systems evolves from that of single-wall nanotubes. A self-consistent calcula-
tion of the charge distribution in such layered systems turns out to be very
difficult, since the determination of eigenstates tends to be either numerically
unstable, or fails to reproduce the inter-layer states correctly. Here we review
a recently published approach 12 which addresses these problems in systems
with cylindrical symmetry. This approach, which is outlined in the following
Section, is based on a numerical method introduced by Salomonson and Öster
13, that had been originally developed to treat correlation effects in many-body
calculations of atoms.

A second problem, addressed in this study, concerns the interplay between
structural and electronic properties of systems consisting of many nanotubes.
The spherical counterparts of nanotubes, fullerenes such as C60, have been ob-
served to spin within the C60 solid, whereas spinning or twisting of individual
tubes within a bundle or a multi-wall tube has not been discussed so far. Our
particular interest in tube rotations results from the fact that both the spin-
ning/twisting motion and the electronic structure of these systems depends
strongly on the anisotropy of the inter-tube interaction. We suggest the on-
set of “orientational melting” at T ∗ as one possible explanation of the unusual
temperature dependence of resistivity in nanotube bundles, which show a tran-
sition from non-metallic to metallic behavior as the sign of dρ/dT changes at
T ∗≈50− 100 K.

2 Theory

In the following we discuss two possible approaches to determine the electronic
structure of nanotubes and related systems with near-cylindrical symmetry.

First, we review a recently published 12, numerically stable formalism to
study the electronic structure of single-wall, multi-wall, and filled carbon nan-
otubes as well as nanowires. This general, self-consistent approach, based on
the ab initio density functional formalism, yields the complete spectrum of oc-
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cupied and unoccupied eigenstates in systems with cylindrical symmetry. We
apply this technique to the above-mentioned systems with extreme spatial vari-
ations of the charge density, treating the ionic background in an approximative
way.

In the second part, we will review the parametrized Linear Combination
of Atomic Orbitals technique that will allow us to assess the effect of the exact
ionic positions on the electronic structure of a nanotube systems.

2.1 Density functional calculation of the complete set of electronic eigenstates
of nanotubes

The numerical procedure to calculate self-consistently the electronic structure
of nanotubes follows closely that described in Ref. 12 and is based on the
density functional theory (DFT) 14,15. All expressions, unless their dimension
is specified, will be given in Hartree atomic units.

In the electronic ground state, the total energy E is a well-defined func-
tional of the total charge density ρ(r). E[ρ(r)] can then be obtained in a
variational manner, with the constraint that the total number of electrons be
conserved, by solving self-consistently the set of Kohn-Sham equations 15

[
−1
2
∇2 + Veff (r)

]
ψi(r) = εi ψi(r)

ρ(r) =
occ∑
i

|ψi(r)|2 . (1)

The effective potential Veff in the local density functional (LDA) formalism is
given by

Veff (r) = Vion(r) + VH (ρ(r)) + Vxc (ρ(r)) , (2)

where Vion is the ionic background potential, VH is the Hartree potential, and
Vxc is a local potential describing the effect of exchange and correlation. In the
present work, we use the Gunnarsson-Lundqvist parameterization 16 of Vxc.

The most satisfying approach to determining the electronic states of multi-
wall nanotubes would be to consider their atomic structure. This could be
achieved in a self-consistent manner using LDA with a Linear Combination of
Atomic Orbitals (LCAO) basis. However, the large number of carbon atoms
per unit cell needed to describe a long, possibly chiral nanotube makes a sim-
plified approach more attractive. In the following, we focus on the electronic
structure arising from the interacting 2s and 2p valence electrons of carbon,
and replace the point charges of the individual C4+ ions in the graphitic walls
by two-dimensional charged “sheets” (“2D jellium background”) of cylindrical
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symmetry, with uniform surface-charge density σ. For a graphitic honeycomb
lattice with a C–C bond length of 2.68 a.u. we obtain σ = +0.428 e/a.u.2.

Eigenvalue problem in systems with cylindrical symmetry The po-
tential due to the ionic background charge of an infinitely long single-wall
nanotube of radius R is given by Gauss’s law 17 as

Vion(r) =
{−2λ log(R) + c for r ≤ R
−2λ log(r) + c for r > R ,

(3)

where λ = 2πRσ is the number of electrons per unit length of the nanotube
and c is an arbitrary constant. In multi-wall nanotubes the total ionic back-
ground potential is a superposition of potentials obtained using Eq. (3) for the
individual nanotubes of radius R. Gauss’ law gives also a very similar expres-
sion for the ionic background potential of an infinitely long, structureless solid
wire of radius R,

Vion(r) =
{−λ((r/R)2 − 1)− 2λ log(R) + c for r ≤ R
−2λ log(r) + c for r > R .

(4)

Here, λ is the number of electrons per unit length of the wire and c is an
arbitrary constant. The eigenfunctions of the Kohn-Sham operator for a nan-
otube or nanowire of length L (with L >> R), aligned with the z axis, can be
factorized into a radial, an azimuthal, and an axial part as

ψnmk(r, ϕ, z) =
1√
πL
Rnm(r)eimϕ sin

(
kπ

L
z

)
. (5)

Here, n = 1, 2, 3, . . . denotes the radial quantum number, m = 0,±1,±2, . . .
the azimuthal quantum number, and k = 1, 2, 3, . . . the axial quantum number.
The physical significance of (n− 1) is the number of radial nodes of ψnmk. In
the corresponding fashion, |m| and (k − 1) give the number of azimuthal and
longitudinal nodes of ψnmk, respectively.

We now construct a cylindrical box of large but finite length L, and align
the axes of the nanotube and the cylinder. The discretization of the spec-
trum due to the finite length L is minimized for sufficiently large values of
L. The most challenging problem is the determination of the radial wavefunc-
tion Rnm(r), which we solve by first substituting Rnm(r) = unm(r)/

√
r. The

Kohn-Sham Eq. (1) leads to a new equation for unm(r)
[
−1
2

{
∂2

∂r2
+

1
4r2

}
+
m2

2r2
+
k2π2

2L2
+ Veff (r)

]
unm(r) = εnmk unm(r) . (6)

4



Numerically stable technique to solve the eigenvalue problem A nu-
merical solution of the differential equation (6) for the radial function unm(r)
using a standard point-and-shoot method 18 generally fails if several classi-
cally allowed regions are separated by forbidden regions, which is the case in
multi-wall nanotubes. To solve this differential equation, we adopt a technique
introduced by Salomonson and Öster 13, that has been originally developed for
atoms, to systems with cylindrical symmetry. The objective is to determine
the eigenfunction unm(r) on a linear grid of N points r1, . . ., rN , separated
by a constant distance h, inside the cylindrical box. To evaluate the kinetic
term in the radial Eq. (6), we use the symmetric five-point formula for the
second-order derivative of a function unm(r)

∂2u(r)
∂r2

=
1

12h2
[−u(r−2h)+16u(r−h)−30u(r)+16u(r+h)−u(r+2h)]+O(h4) .

(7)
Substituting the expression (7) in Eq. (6) leads to a set of N coupled linear
equations for unm(ri) that can be formulated as an eigenvalue problem

(A+D)unm = ε unm . (8)

Determining the eigenvector u = (unm(r1), unm(r2), . . ., unm(rN )) in Eq. (8)
is equivalent to solving Eq. (6) on the radial grid. The matrix describing the
operator A is diagonal, with its elements given by

Aii =
m2

2r2i
+
k2π2

2L2
+ Vion(ri) + VH(ri) + Vxc(ri) , (9)

where i = 1, 2, . . ., N . D is the symmetric band matrix obtained from Eq. (7),
given by

D = − 1
24h2




−30 + 1
4r21

16 −1 0 0 · · · 0

16 −30 + 1
4r22

16 −1 0 · · · 0

−1 16 −30 + 1
4r23

16 −1 · · · −1

...
...

...
...

...
. . . 16

0 0 0 0 −1 16 −30 + 1
4r2N



.

(10)
We require A + D to be symmetric in order to obtain a real eigenvalue ε in
Eq. (8) and a radial eigenfunction unm(r) that is real and doubly differen-
tiable everywhere inside the cylinder. The above form of D implies that the
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wavefunctions vanish outside the grid, i.e. all electrons are contained in the
cylindrical box. The asymptotic behavior of unm(r) in the region close to the
z-axis, unm(r)∝r|m|+1/2, has to be enforced, while still keeping the matrix D
symmetric 13. To achieve this, we focus on the matrix elements D11, D12, D21

and D22. The A+D matrix can be symmetrized by extending the radial axis
to the left of the first grid point, and using the ansatz

unm(r0) = α
[
unm(r0)
unm(r1)

]
unm(r1) + (1− α)

[
unm(r0)
unm(r2)

]
unm(r2)

unm(r−1) =
[
unm(r−1)
unm(r1)

]
unm(r1)

(11)

for the function values at the new grid points r−1 and r0 preceding the first
grid point r1. The function value ratios occurring in Eq. (11) are determined
using the appropriate asymptotic behavior of unm(r). The free parameter α is
then chosen in such a way that D12 = D21.

The last difficulty in the solution of the eigenvalue Eq. (6) occurs due to
the divergence of two terms in the differential operator at r = 0. We address
this problem in systems with nonzero charge density near the cylinder axis
by introducing a very fine grid near r = 0 and displacing this grid laterally
by a small distance, e.g. 0.1h. In this case, none of the microgrid points
r−1 = 0.1h, r0 = 1.1h, r1 = 2.1h, . . ., coincides with r = 0. Interpolation is
then used to determine the radial wave function and all its derivatives even in
the region close to the cylinder axis.

We note that the total number of eigenstates is determined by the rank
N of the matrices A and D in Eq. (8) (that is related to the radial grid) and
not the total number of electrons. Consequently, this approach can be used to
determine also the unoccupied states, which are the basis of calculations deter-
mining the collective response of these systems, e.g. using the time-dependent
LDA (TDLDA) or the LDA-based Random Phase Approximation (LDA-RPA)
technique.

2.2 Parametrized Linear Combination of Atomic Orbitals (LCAO) technique

To investigate the effect of discrete atomic positions on the electronic struc-
ture of nanotubes, we have made use of the parametrized linear combination
of atomic orbitals technique, since the full LDA theory is too demanding on
computer resources. It has been shown that mapping LDA results for charac-
teristic structures onto parameters of an LCAO Hamiltonian provides a very
useful and efficient way to determine the electronic states of carbon systems
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19. The nearest-neighbor LCAO Hamiltonian we use reads

HLCAO =
∑

i

∑
β

ε0iβa
†
iβaiβ +

∑
i<j

∑
β,β′

tiβ,jβ′(a†iβajβ′ + c.c.) . (12)

In the present notation, α and β refer to electronic levels of the cluster and
isolated atoms, respectively, and Roman indices denote atomic sites. In the
LCAO calculations of carbon nanotubes, we use four orbitals of s, px, py, and
pz character on each atomic site and Slater-Koster parameters19 for the matrix
elements of the Hamiltonian (12).

3 Results

3.1 Electronic Structure of Isolated Nanotubes

In Fig. 1 we present results for the charge distribution and the total potential
of a hollow single-wall nanotube, a thin nanowire, a tube filled by a nanowire,
and a double-wall nanotube. In these calculations, the C4+ ion charges in each
nanotube wall have been smeared out into infinitely thin cylindrical walls,
representing a “2D jellium background”, and only the C2s and C2p valence
electrons have been considered as active. Our description of Pb nanowires
within the jellium model follows Ref.20. We use rs = 2.30 a.u. for the Wigner-
Seitz radius and the valence Z = 4 for Pb in the ground-state configuration
[Xe]4f145d106s26p2. The jellium background charge density of Bi, which has
also been found to fill carbon nanotubes, is only ≈25% higher than in Pb.
Consequently, we expect qualitatively similar results for nanowires of these
two elements.

As mentioned in the Theory Section, the electronic states in systems with
cylindrical symmetry are characterized by the quantum numbers n, m and
k, where (n − 1) corresponds to the number of radial nodes, |m| corresponds
to the number of azimuthal nodes, and (k − 1) is the number of longitudinal
nodes of the wavefunction. In order to better understand the nature of such
wavefunctions in cylindrical symmetry, we first turn to analogous spherical
systems, such as the C60 fullerene, that have been studied extensively from
this point of view.

The C60 molecule with icosahedral symmetry contains all sixty atoms in
equivalent sites on a hollow, spherical graphitic shell. The near-spherical struc-
ture of C60 suggests to represent the wave functions in a spherical basis 21.
Indeed, results of self-consistent LDA calculations for C60 suggest that to a
good approximation, occupied eigenstates of C60 can be characterized by ra-
dial and angular quantum numbers 22. The description of C60 by a spherically
symmetric hollow cage turned out to be a very reasonable first approximation

7



Figure 1: Results for the self-consistent radial charge density ρ(r) and effective total potential
Veff (r) of (a) a hollow single-wall carbon nanotube with radius R = 3.4 Å, (b) a solid Pb

nanowire with R = 2.4 Å, (c) the nanowire (b) encapsulated in the nanotube (a), and finally
(d) a double-wall nanotube, consisting of the nanotube (a) enclosed inside a nanotube with
the radius R = 6.8 Å. Symbols are introduced to distinguish the different systems in the
subfigures. From Ref. 12. c©American Physical Society 1997.

that could be further improved systematically by considering correction terms
addressing the icosahedral point-group symmetry breaking 23,24. Since atomic
positions are ignored in the spherical hollow cage description of C60, there is
no direct way to distinguish the electronic states associated with individual in-
teratomic σ and π bonds. The distinction between the σ and π states is rather
based on the fact that the graphitic layer is a nodal layer for the nonbond-
ing ppπ molecular orbitals, whereas it is not a nodal layer for the σ orbitals.
Correspondingly, σ states can be associated with wavefunctions that have no
radial nodes, whereas π states have a single node in the radial wave function.
The angular arrangement of the wavefunction nodes is given by the spherical
harmonics and the angular quantum number l = 0, 1, 2, . . .. An analysis of the
occupied levels of the C60 molecule shows that the levels close to the highest
occupied molecular orbital (HOMO) are of π type, whereas the more deeply
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bound states are of σ type 25.
Since the interatomic bonding in the nanotubes and the C60 fullerene are

very similar, we expect that a description of the C4+ ions by a homogeneously
charged, infinitely thin layer will provide a valid description also for the nan-
otube. As in the C60 molecule, we will distinguish σ states with no radial node
from π states with one radial node in the graphene wall. This is illustrated in
Fig. 2, which displays the total and partial electronic densities of states (DOS)
for the isolated nanotube and the nanowire discussed above and in Fig. 1.

Figure 2: Total electronic density of states (DOS) of (a) a hollow single-wall nanotube with
the radius R = 3.4 Å, and (b) a solid Pb nanowire with R = 2.4 Å, with EF at energy
zero. (c) The partial DOS with respect to the radial quantum number n of the nanotube
(a) shows the n = 1 (σ), n = 2 (π), and n = 3 (δ) bands extending above −33 eV, −5 eV,
and EF , respectively. (d) The corresponding partial DOS of the nanowire (b) shows the σ,
π, and the δ bands extending above −21 eV, −10 eV, and +2 eV, respectively. Symbols are
introduced to distinguish the different systems in the subfigures. From Ref. 12. c©American
Physical Society 1997.

The comparison between the total DOS for the isolated nanotube in Fig. 2(a)
and its decomposition into partial DOS according to the radial wave number
n in Fig. 2(c) shows an energy level spectrum starting 33 eV below the Fermi
level with states containing no radial nodes, establishing that bonding origi-
nates from the σ states. The π states are much higher in energy and close to
the Fermi level, establishing their essentially nonbonding character. None of
the n = 3 (δ) band states is occupied in the ground state, but such states are
important when studying electronic excitations. Similarly, our results for the
total and partial DOS of the Pb nanowire, shown in Figs. 2(b) and (d), suggest
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that only n = 1 (σ) and n = 2 (π) states are occupied in this system.
Both the nanotube and the nanowire show substructure in the DOS of each

n−decomposed subband, that is associated with the azimuthal quantum num-
ber m and the longitudinal momentum k. The peaks in the partial densities
of states are van Hove singularities that occur in one-dimensional systems 20.
Each of these singularities is associated with a particular azimuthal quantum
number |m|; singularities occurring at higher energies are associated with larger
values of |m|. We will refer back to Fig. 2 in the following, when discussing
the DOS of more complex systems, such as multi-wall and filled nanotubes.

The van Hove singularities, which are typical of one-dimensional systems
and dominate the density of states of the “2D jellium background” nanotube
in Fig. 2(a), as well as the azimuthal subbands in Fig. 2(c), are also present
when the discrete atomic positions are considered in the electronic structure
calculation. This means that the parametrized LCAO technique reflects cor-
rectly the one-dimensional axial as well as the radial and azimuthal states. We
conclude that both techniques yield electronic spectra that can be character-
ized by the radial, azimuthal, and axial quantum numbers n, m and k, with
consistent level ordering.

3.2 Effect of Inter-Tube Interactions on the Electronic Structure

In the following, we focus the on the effect of inter-wall coupling on the elec-
tronic structure of multi-wall and bundled single-wall nanotubes. These small
effects are addressed using a combination of ab initio and parametrized tech-
niques. To obtain the total energy of nanotubes in perfect lattices or of frag-
ments near the tube end, we use the Density Functional Formalism with a
plane wave basis for the solid 26 and a numerical basis for the fragments 27.
Band structure details are studied using a parametrized Linear Combination of
Atomic Orbitals (LCAO) formalism, with parameters described in Ref.28. The
inter-tube interaction is described in analogy to the inter-ball interaction in the
doped C60 solid 29. Up to 102, 400 k-points in the irreducible Brillouin zone
are used to determine the electronic structure of ordered nanotube lattices, the
“ropes” 26.

Single-Wall Nanotube “Ropes” The interaction between adjacent nan-
otubes in a bundle or “rope” is, same as in the C60 solid, not completely
isotropic about the tube axis. Individual (10,10) tubes are expected to librate
about their axis with a relatively low frequency of 50− 60 cm−1, close to the
observed (but not identified) 41 cm−1 infrared-active mode30. Even though the
activation barrier for free rotation is only <∼4 meV per atom, individual tubes
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are not expected to rotate rigidly due to their high total mass. Since the rigid-
ity of nanotubes is limited, finite segments are more likely to twist about the
tube axis. The twisting motion is likely to be accompanied by displacement of
orientational dislocations that have been frozen in during the assembly of the
“ropes”.

Inter-tube interactions in the ropes have been shown to modify the elec-
tronic structure of individual tubes by opening a pseudo-gap near the Fermi
level 26,31,32. With the onset of orientational melting, one would expect the
pseudo-gap to smear out, thus significantly increasing the conductivity of the
system.

Inter-tube coupling leads to an increase in the density of states by ≈7%
outside the pseudo-gap. An even larger increase in the density of states, namely
by a factor of ≈12 with respect to the pristine system, is predicted for the
potassium doped system with the composition KC8, in agreement with the
observed conductivity increase by a factor of 10∼20 33.
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Figure 3: (a) Density functional results for the relative total energy ∆E of a “rope” of
(10,10) carbon nanotubes as a function of the inter-tube spacing a. raphite as a function
of the bond length dCC . (b) Schematic end-on view of the equilibrium “rope” structure,
depicting the tube orientation angle ϕ. (c) Dependence of the “rope” energy ∆E on the
orientation angle ϕ of individual nanotubes. All energies are given per atom. From Ref. 26.
c©American Physical Society 1998.

Multi-Wall Nanotubes Inter-wall interaction in a multi-wall nanotube
may cause similar changes in the electronic structure near the Fermi level as
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Figure 4: (a) Irreducible part of the hexagonal Brillouin zone of a nanotube crystal, the
“rope”. Band structure of (b) an individual nanotube and (c) the “rope”, along the tube
axis. (d) Dispersion of the top valence and bottom conduction bands of the “rope”, in a
plane perpendicular to the tube axis, containing the point ∆F depicted in (c). From Ref. 26.
c©American Physical Society 1998.

the inter-tube interaction in “ropes” of nanotubes described above34,35. Our
calculation for the (5,5)@(10,10) double-wall tube36 suggests that due to inter-
tube coupling, the density of states near EF increases by ≈3%. The value of the
rotational barrier per atom in this system is somewhat smaller than in nanotube
“ropes”, in agreement with results for the same system published in Ref. 37.
Off-axis displacements of <∼0.1 Å in multi-wall tubes cost essentially no energy.
For the particular (5,5)@(10,10) double-tube, we expect librational modes to
occur at ωin≈31 cm−1 for the inner tube and ωout≈11 cm−1 for the outer
tube, depending on which of these tubes is pinned. As in the case of nanotube
“ropes”, we expect segments of individual tubes to exhibit a twisting motion
rather than the entire tubes to rotate rigidly. We also expect an orientational
melting transition to occur in multi-wall nanotubes, close to or below the
temperature expected in single-wall nanotube “ropes”.

4 Summary

We have used the ab initio local density functional and parametrized LCAO
formalism to study the electronic structure of individual single-, multi-wall,
and filled nanotubes, as well as ordered nanotubes lattices.

In most cases, describing nested carbon nanotubes by smearing out the C4+

ion charges in the graphene layers into “2D jellium background” cylinders and
treating the active C2s and C2p electrons self-consistently proved adequate for
the calculation of the electronic structure. In order to handle the extremely
inhomogeneous system of multi-wall tubes with 103 − 104 electrons, a new
formalism has been utilized that discretizes the eigenvalue problem on a grid
and yields a complete set of occupied and unoccupied states. The self-consistent
electronic structure of infinitely long nanotubes, represented by the “2D jellium
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Figure 5: Density of states of (a) an isolated nanotube and (b) a nanotube crystal, the
“rope”. The structure of the pseudo-gap in the “rope” is displayed in the inset on an
expanded energy scale. Dashed and dotted lines indicate the position of the Fermi level EF

for the undoped and E′
F for the KC8 doped systems, respectively. From Ref.26. c©American

Physical Society 1998.

background” model, compares favorably with parametrized LCAO calculations
that take atomic structure into account. The electronic spectra of single-wall,
multi-wall, and filled nanotubes, as well as nanowires, can be characterized by
the radial, azimuthal and axial quantum numbers n, m and k. These quantum
numbers are reflected in our results based on the self-consistent “2D jellium
background” model and the parametrized LCAO technique that considers the
atomic structure.

Due to their large inertia, individual nanotubes do not rotate as a whole
when they are part of a multi-tube system. Finite tube segments are rather ex-
pected to exert a local twisting motion. Orientational dislocations, which were
frozen in during the formation of the “ropes”, lower the activation barrier for
tube rotations and hence the orientational melting temperature of the “ropes”.
We find that the inter-tube interaction, found in multi-wall nanotubes and or-
dered “ropes”, induces additional band broadening by ≈0.2 eV, and opens up
a pseudo-gap at EF in the “ropes” and multi-wall nanotubes.
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and R. E. Smalley, Science 273, 483 (1996).

6. M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, Science of Fullerenes
and Carbon Nanotubes (Academic Press, San Diego, 1996).

7. R. Saito, M. Fujita, G. Dresselhaus and M.S. Dresselhaus, Appl. Phys.
Lett. 60, 2204 (1992).

8. N. Hamada, S. Sawada and A. Oshiyama, Phys. Rev. Lett. 68, 1579
(1992).

9. M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, Science of Fullerenes
and Carbon Nanotubes (Academic Press, San Diego, 1996).

10. J.W. Mintmire, D.H. Robertson, B.I. Dunlap, R.C. Mowrey, D.W. Bren-
ner and C.T. White, Mater. Res. Soc. Sym. Proc. 247, 339 (1992).

11. X. Blase, L.X. Benedict, E.L. Shirley and S.G. Louie, Phys. Rev. Lett.
72, 1878 (1994).
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19. David Tománek and Michael A. Schluter, Phys. Rev. Lett. 67, 2331

14



(1991).
20. N.W. Ashcroft and N.D. Mermin, Solid State Physics, Saunders College

Publishing, 1976.
21. M. Braga, S. Larsson, A. Rosén and A. Volosov, Astron. Astrophys. 245,

232 (1991).
22. J.L. Martins, N. Troullier and J.H. Weaver, Chem. Phys. Lett. 180, 457

(1991).
23. K. Yabana and G.F. Bertsch, Physica Scripta 48, 633 (1993).
24. C. Yannouleas and U. Landman, Chem. Phys. Lett. 217, 175 (1994).
25. E. Westin and A. Rosén, Int. J. Mod. Phys. B 6, 3893 (1992).
26. Young-Kyun Kwon, Susumu Saito, and David Tománek Phys. Rev. B -
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