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Abstract. Methods for injecting charge currents on single wall molecular nanotubes
through nonlinear interaction with optical fields are studied. By varying the relative
phases, frequencies and polarizations of the incident fields one can control the symme­
tries of the optically excited states and the phase space distribution for the photoexcited
electrons. We study coherent control of a photocurrent on a carbon nanotube using
quantum interference of excitations from optical fields oscillating at wand 2w. For BN
nanotube we study the shift current as a probe of the ground state polarization of the
heteropolar tube. Here we find that the sign and size of the ground state polarization
is an intrinsic quantum effect controlled by the chiral index of the BN nanotube.

INTRODUCTION

Nonlinear optical excitations can be used to control the symmetry and phase
space distribution of excited electronic states in bulk semiconductors and provide
a powerful method for controlling electronic excitations on molecular nanotubes as
well. Nanotubes of carbon or BN can be formed in nearly defect free molecular
structures that are microns long though only nanometers in diameter. The exten­
sion of the theory of nonlinear optical response from bulk semiconductors to these
compact tubular structures leads to interesting and sometimes surprising physical
effects that we review in this paper.

COHERENTLY CONTROLLED PHOTOCURRENTS ON
SWNT'S

A photocurrent on a semiconducting nanotube can be produced by optically
exciting electron hole pairs and using a static electric field to bias the diffusion of
the photoexcited carriers. Interestingly a photocurrent can also be produced even
in the absence of a static field at nonlinear order in the exciting fields. Optical
fields oscillating at frequencies wand 2w can couple the same initial and final
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electronic states through separate one photon (2w) and two photon (w) excitation
pathways. Interference between the two transition amplitudes produces a term
in the absorption cross section that is odd in the incident fields, producing an
asymmetry in the velocity distribution of the photoexcited carriers, and hence a
charge current. For a nanotube the sign of this current is controlled by the matrix
elements of the transition dipole connecting the initial and final states and the
relative phases of the incident optical fields. This nonlinear photoeffect has been
observed in a series of beautiful experiments on bulk semiconductor [1,2].

The application of this idea to a carbon nanotube [3] turns out to be complicated
by the chiral symmetry of its low lying electronic states. Electronic states on a
carbon nanotube are derived from the band eigenstates of the graphene sheet near
the zone corners K and K' which can be distinguished by their chirality. At low
energies and long wavelengths the effective mass Hamiltonians for momenta q near
these points has the form [4]

H ( ) - ()'I=. ( 0 qx-(+)iQy )
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Note that the two dimensional graphene lattice is not a chiral structure and thus
most simple observables require a Brillouin zone sum which averages over the chiral
character of the small q eigenstates of (1). Nevertheless, the chirality of the band
eigenstates produces important physical effects that persist even after the summa­
tion. For example, the cross section for optical transitions between the occupied
and empty bands of the graphene sheet at wavevector g produced by a linearly
polarized incident field Aw depends on the orientation of the wavevector following
the Igx JLI 2 law rather than the (g. Aw )2 law expected from k· pperturbation the­
ory applied to an isotropic band. Note that this implies that the interband matrix
elements vanish for Aw polarized along the axis of a conducting nanotube where
the lowest branch of azimuthally quantized electronic states pass exactly through
the K(K') points. This vanishing of the interband matrix elements is exact within
the linearized long wavelength theory, and it is only weakly violated in the lattice
theory where the first corrections occur to order (qa)3 where a is the graphene
lattice constant.

When a carbon nanotube is simultaneously excited by the optical fields it and
A2w , the interference between the one photon and two photon transition amplitudes
produces a polar asymmetry in the density of excited photocarriers. However,
we find that the strength of this effect is vastly different for semiconducting and
conducting tubes. The cross section for this third order process connecting states
at wavevector q = k - kp is calculated in reference [4] where we find

(2)

where 26. denotes the bandgap at q = 0 and the A's and ¢'s are the amplitudes and
phases of the incident fields. Note that the strength of the effect is proportional
to 6.2 and vanishes for a conducting tube when 6. -+ O. The calculated injection
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FIGURE 1. Frequency dependence of the third order transition rate that produces a photocur­

rent on a single wall carbon nanotube. The curves are calculated for a semiconducting gap 6. =

800 meV, and an incident amplitude IAI = 10-9 T-m at all frequencies. The dashed curve weights
the transition rate by the group velocity of the carriers in the final state.

rate is plotted as a function of the exciting frequency w in Figure 1. The transition
rate is relatively strong, and normalized per atom it is comparable to the analogous
process found in bulk GaAs.

Figure (1) displays results for a semiconducting nanotube; within the linearized
theory this third order process is symmetry forbidden for a conducting SWNT.
Discrete lattice effects on a conducting nanotube weakly break this symmetry and
lead to a weak response at order (qa)3. Thus for a conducting tube the nonlinear
photoeffect is allowed, though extremely weak (it is typically suppressed by a factor
of 102 compared to the rate for semiconducting tubes). A detailed calculation of
this interference effect for conducting as well as semiconducting tubes is presented
in reference [4].

The simplest experimental geometry for a SWNT has the incident optical fields
collinear and polarized along the tube axis. For the analogous process on a graphene
sheet the linear polarizations of the incident fields can also be varied and this
provides a sensitive control parameter for changing the angular distribution of the
optically injected carriers. Results for the angular dependence of the interference
term in the absorption cross section calculated for a graphene sheet are displayed
in Figure 2 for various incident polarizations.

POLARIZATION OF HETEROPOLAR TUBES

BN forms molecular nanotubes in which the A and B sublattices of the honey­
comb lattice are occupied by inequivalent atomic species. Although the isolated BN
bond is strongly ionic in character, a planar BN sheet has no macroscopic electric
dipole moment because of its perfect threefold symmetry.

This symmetry is removed when the BN sheet is wrapped to form a nanotube.
Thus a BN nanotube can exhibit a net electric dipole moment though its parent
BN sheet does not, and it is natural to ask how the size and sign of this dipole
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FIGURE 2. Angular distribution of the interference terms in the third order transition rate

calculated for a graphene sheet. The polar plots give the anisotropic part of the transition rate

as a function of the propagation direction of the injected carrier. The solid(dashed) lines give the

positive(negative) contributions to the total transition rate. The angle 08 is the angle between
jC and Azw .

moment is determined by the lattice structure of the wrapped tube. Surprisingly,
we find the electric dipole moment of the BN cannot be determined by any local
geometrical measurement of the lattice structure in the tangent plane of the tube.
Instead the electric dipole moment along the tube axis is controlled by the quantum
mechanical boundary conditions that quantize the azimuthal component of the
crystal momentum of the Bloch states around the tube circumference. Thus the
macroscopic electric dipole moment of the BN tube has an intrinsically nonlocal
quantum mechanical origin [5].

The situation is analogous to the boundary conditions that distinguish con­
ducting from nonconducting behavior for the graphene nanotube. In this well
studied case, the two families of tubes are distinguished by the chiral index
v = mod(m - n,3) where (m, n) are the wrapping indices. Tubes with l/ = 0
qare conductors, while those with l/ i=- 0 are semiconductors.

For the heteropolar tube one finds that the one dimensional polarization p (dipole
per unit length) is

e 6.
p = -arctan(~) (3)
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where 6. is a symmetry-breaking site diagonal potential that distinguishes the A
and B sublattice and {) ex lJ is the gap parameter for the related graphene tube for
which 6. = o. Formally, equation (3) is obtained by integrating the flow of charge
induced by adiabatically increasing 6. starting from the reference state 6. = 0 for
which dipole moment is zero by symmetry. From equation (3)one sees that the sign
of the gap parameter controls the sign and size of the macroscopic polarization of
the tube for any nonzero value of 6.. This implies that the electric dipole moments
of single wall BN tubes should display a nontrivial dependence on the wrapping
indices with period three. Equation (3) also predicts nontrivial and quite strong
piezoelectric properties that couple the electric dipole moment to mechanical strain
through the perturbations of the gap parameter 6.

A direct measurement of this intrinsic electric polarization of a BN tube is difficult
since it can be masked by charges accumulated at the tube ends. This physics of the



electric polarization is more directly accessible through the piezoelectric response
of the tube in which the net polarization of a BN tube is modified by mechanical
strain. Alternatively a photogalvanic effect, the shift current, can be used to probe
the ground state polarization.

An introduction to the shift current is given in reference [6] and an application
to BN tubes is presented in reference [5]. Generally, excitation of free carriers
in a polarized material produces a charge current that is biased in a direction
which compensates the ground state electric polarization. Thus a measurement
of the optically induced current can be used as a probe of the ionic character of
the ground state wavefunctions. For a BN tube one expects a shift current which
flows along the tube axis for all 1) =1= 0 tubes. The situation turns out to be more
interesting for tubes with 1) = 0, including armchair tubes with m = n, which
exhibit a solenoidal shift current which circulated around the tube circumference
but does not flow along the axis. In general chiral tubes with 1) =1= 0 can have a
chiral shift current on the nanotube walls. Three possible scenarios are illustrated
in Figure (3) for three different wrapping vectors
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FIGURE 3. caption
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