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Abstract
We study the equilibrium structure of large but finite aggregates of magnetic dipoles,
representing a colloidal suspension of magnetite particles in a ferrofluid. With increasing
system size, the structural motif evolves from chains and rings to multi-chain and multi-ring
assemblies. Very large systems form single- and multi-wall coils, tubes and scrolls. These
structural changes result from a competition between various energy terms, which can be
approximated analytically within a continuum model. We also study the effect of external
parameters such as magnetic field on the relative stability of these structures. Our results may
give insight into experimental data obtained during solidification of ferrofluid aggregates at
temperatures where thermal fluctuations become negligible in comparison to inter-particle
interactions. These data may also help to experimentally control the aggregation of magnetic
particles.

1. Introduction

Complex fluids, consisting of a colloidal suspension of
particles carrying electric or magnetic dipole moments [1],
are intriguing systems with a wide range of technological
applications [2, 3]. Finite dipole aggregates are expected to
display a plethora of nontrivial equilibrium structures due to
the competition between the strongly anisotropic dipole–dipole
interaction, favoring open, linear structures, and isotropic
inter-particle forces, which favor compact structures. In
ferrofluids, consisting of a colloidal suspension of magnetite
particles, reported observations range from compact and
branched macroscopic structures [4] to complex labyrinthine
patterns [5, 6], and depend on the applied field. Similar
complex structures have been observed in electro-rheological
fluids, where electric dipoles are induced by inter-particle
interactions [7–9].

Except for aggregates with few particles [3, 10, 11],
structural studies of complex fluids have focused on pattern
formation in systems with infinitely many particles. Here we
present results in the interesting finite-size regime, where the
surface energy, favoring compactness, competes with inter-
particle interactions, which favor open structures. As the
role of the surface diminishes with increasing number of
particles, we find the structural motif to evolve from chains

and rings to multi-chain and multi-ring assemblies, single- and
multi-wall coils, tubes and scrolls. We map the inter-particle
interactions in the colloidal suspension onto a continuum
model and show how changes in external parameters, such as
external magnetic field or the liquid–particle interaction, affect
the relative stability of these systems and induce structural
transitions.

2. Discrete microscopic model of ferrofluid
aggregates

To gain microscopic insight into the causes of pattern
formation in ferrofluids, which is beyond the scope of present
experimental observations [4, 6], we perform total energy
and structure optimization calculations for finite aggregates of
magnetic particles suspended in a viscous liquid. Our model
system is designed to represent a typical ferrofluid that contains
magnetite particles, covered with surfactants, such as oleic
acid. These surfactants cause a short-range entropic inter-
particle repulsion, which keeps the particles in suspension
and prevents a structural collapse. Not only the dynamics of
the ferrofluid, but also the effective inter-particle interaction
energy is affected by the viscous liquid used in the colloidal
suspension, usually n-eicosane or kerosene.
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The potential energy Utot of magnetic particles with
magnetic moment µi = μ0µ̂i ,

4 exposed to an external
magnetic field H , consists of the potential energy of each
particle in the field and pairwise interaction between the
particles, as

Utot = −μ0

∑

i

µ̂i · H +
∑

j>i

(udd
i j + unm

i j ). (1)

The dipole–dipole interaction udd
i j between two identical

particles, separated by ri j = r j −ri , has the classical form [12]

udd
i j = (μ2

0/r 3
i j)[µ̂i · µ̂ j − 3(µ̂i · r̂i j)(µ̂ j · r̂i j)]. (2)

Following previous work [3, 10, 13], we have described
the nonmagnetic part of the inter-particle interaction unm

i j =
unm(ri j) by an isotropic potential with a soft-core short-range
repulsion and a weak, long-range attraction, with the functional
form

unm
i j = ε

[
exp

(
σ − ri j

ρ1

)
− exp

(
σ − ri j

ρ2

)]
. (3)

The universal expressions (1)–(3) are well suited to describe
typical ferrofluids containing magnetite particles with a
magnetic moment of μ0 = 2.1×104 μB. The nonmagnetic
interaction between these particles is well represented by the
parameters ρ1 = 0.25 nm, ρ2 = 0.5 nm, σ = 10.0 nm,
and ε = 8 meV. Our general conclusions about structural
arrangements are independent of these particular parameters.

In the following, we first consider the case H = 0.
In systems with negligible magnetic interactions, particles
aggregate to compact, spherical clusters with a near-constant
equilibrium inter-particle spacing L0 ≈ σ . Systems with
dominating dipole–dipole interaction, on the other hand, favor
straight chains of aligned dipoles with the same separation L0.
Independent of size, the equilibrium geometry of such systems
should be a compact arrangement of chains subject to some
deformation. In the following, we will analyze the evolution of
complex geometries in terms of the particular arrangement of
aligned, deformed chains of dipoles.

In a straight, N → ∞ membered chain, the potential
energy per particle is given by

U c = U c
tot/N ≈ –2ζ(μ2

0/L3
0) + unm(L0), (4)

where ζ = ∑∞
n=1 n−3 ≈ 1.202 06. In the following we

will discuss deviations from this expression due to the finite
size and deformation of the chain, and due to inter-chain
interactions in stable structural arrangements.

3. Continuum model of large ferrofluid aggregates

To compare total energies of finite systems with very many
particles and to make universal conclusions about structural
transitions, we introduce a continuum model that describes the
essence of the dominant interactions. Each chain of Nd aligned
dipoles of size L0, illustrated in figure 1(a), is represented by

4 We define x̂ = x/x as the directional unit vector.

a continuous magnetic rod of diameter5d and length Ld . In
the following, we will use the number of particles N and the
total length Ld = N L0 interchangeably. A planar assembly
consisting of Nc aligned chains of Nd dipoles each, which we
consider as a reference structure and show in the left panel of
figure 1(b), should thus be l = Ncd long and w = Nd L0 wide.

The total energy of a system of interacting chains of
dipoles, represented by deformed magnetic rods, has three
major contributions. The energy required to bend a chain
segment of length L0, depicted in the left panel of figure 1(a),
is approximately proportional to the inverse squared radius of
curvature R. The same relationship applies for bending a plate
to a cylinder, as shown in the middle panel of figure 1(b),

�U bend = +αL0/R2, (5)

albeit with a modified proportionality constant α. This
expression may become inaccurate especially for small radii,
when deviations from uniform coupling are expected due to
the observed fanning alignment of dipoles [14].

The inter-chain interaction energy, associated with
cleaving an infinite layer of aligned dipoles along the chain
direction, is depicted in the middle panel of figure 1(a). This
energy is maximized, when adjacent chains are offset axially
by half a unit cell, and is given by

�U ic = +βL0. (6)

Finally, the energy investment to cleave a straight, infinite
chain, illustrated in the right panel of figure 1(a), is a finite
constant γ . The energy per chain to cleave an infinite planar
assembly of chains normal to the dipole direction is defined in
the same way, as

�U cut = +γ (7)

with a modified value of γ . Whereas α and β are rather
independent of the size of the plate undergoing a structural
change, the value of γ diverges logarithmically with the
number of dipoles N in a square plate. Relative stability of
arrangements in the particular ferrofluid defined in section 2
are described adequately using α = α0 ≈ 63.5 meV nm,
β = β0 ≈ 1.08 meV nm−1, and γ (N) = γ0(N) ≈
26.1 meV ln N + 0.887 meV.

The equilibrium arrangement of dipoles results from the
competing tendencies to minimize strain and to maximize
inter-particle attraction. A single, straight chain is not
strained, but contains two unstable ends. Assemblies of linear
chains, shown in the left panels of figures 1(b) and (c), are
further stabilized by the pairwise inter-chain interaction. The
equilibrium structure represents a compromise between the
energy penalty for unterminated chain ends and the energy gain
due to inter-chain interaction.

Structures with unterminated chain ends may be stabilized
by connecting these ends, which occurs at the expense of
increasing strain energy. As shown in the middle panels of

5 Due to the soft-core potential in equation (3), the optimum rod diameter
d is slightly larger than its hard-core counterpart (

√
3/2)L0 in the staggered

geometry. For the ferrofluid defined in section 2, the optimum value d =
8.90 nm lies close to (

√
3/2)L0 = 8.66 nm.
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Figure 1. (a) Discrete and continuum models illustrating major energy terms α, β, and γ , associated with structural changes in systems of
dipoles. (b) Single-layer structures of dipoles: two-dimensional assembly of chains, assemblies of rings and coils forming single-wall tubes.
(c) Multi-layer structures: three-dimensional assembly of chains, multi-wall tubes formed of rings or coils, and scrolls. The orientation of the
individual dipoles, depicted as spheres, is represented by the north (black) and south (white) pole hemispheres.

figures 1(b) and (c), assemblies of chains may be deformed to
assemblies of rings, which may stack up to form single-wall or
multi-wall tubes. In very large systems, where optimizing the
inter-chain attraction is more important than avoiding a limited
number of chain ends, we may find coils and multi-wall scrolls,
shown in the right panels of figures 1(b) and (c), to compete
favorably with ring assemblies and multi-wall tubes on energy
grounds.

4. Results

To check the accuracy of the continuum approach, we
compared the results of the continuum and the discrete
description for the two-dimensional structures depicted in
figure 1(b). In the continuum approximation, the total energy
of a two-dimensional multi-chain assembly of N = L/L0

particles, distributed over Nc parallel chains of equal length,
is

U mc = +Ncγ − βL(Nc − 1)/Nc (8)

with respect to an N-particle long segment of an infinitely long
chain. The corresponding expressions for the energy of a multi-

ring assembly and of a coil of radius R are, respectively,

U mr = −β(L − 2π R) + αL/R2, (9)

U coil = U mr + γ. (10)

For a given number of particles N , corresponding to a total
chain length L, the optimum number of chain segments Nc

in the multi-chain assembly is determined by minimizing
U mc(L, Nc) with respect to Nc, yielding

Nopt
c = (β/γ )1/2 L1/2. (11)

In a single-wall tube formed by a multi-ring assembly or a coil,
the number of ring turns Nr is given by Nr = L/(2π R), and
its optimum value is obtained by minimizing the expression in
equation (9) with respect to Nr, yielding

Nopt
r =

(
β

8π2α

)1/3

L2/3. (12)

For the particular ferrofluid defined in section 2, we compare
continuum results, based on equations (11) and (12), to those
based on the energy of the discrete system in figures 2(a)
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Figure 2. Optimum number of (a) chains, Nopt
c , and (b) rings, Nopt

r , in single-layer structures of N magnetic dipoles. Optimization results
using discrete particles are shown by the solid lines and continuum results by the dashed lines. (c) The energy of optimized chain assemblies,
ring assemblies, and coils, as a function of system size N = L/L0, based on the continuum approach. (d) Energy of multi-wall tubes (solid
lines) and scrolls (dashed lines) with respect to a reference strip of the same width and length Ld . For sufficiently large Nd values, tubular
structures with a growing number of walls Nw are preferred over a planar strip. The higher stability of multi-wall tubes over scrolls results
from the absence of exposed edges. All numerical results represent the ferrofluid defined in section 2.

and (b). In view of the fact that Nopt
c and Nopt

r were not
required to be integers in the continuum approach, we find the
agreement between the two sets of results very satisfactory, and
will base the following discussions on the continuum approach.

For systems with one layer of aligned dipoles, results
in figure 2(a) suggest a transition from a single-chain to a
double-chain structure for N > 23, to a triple-chain structure
for N > 82, and a planar quadruple-chain assembly for
N > 180. The extreme aspect ratio or the rectangles is
caused by the large energy penalty due to unterminated chains.
According to figure 2(b), for a given number of dipoles N , the
optimum number of rings in tubular structures exceeds that of
chains in planar structures, thus making tubular structures more
compact.

Given the optimum geometry of a multi-chain, multi-
ring, and a coil assembly, we compare the relative energy
per particle of these structures as a function of system size
N in figure 2(c). These energy results indicate a transition
from a chain to a ring motif for N > 3. For systems with
N > 15 dipoles, the inter-chain attraction more than offsets the
bending strain energy, stabilizing coils with respect to planar
chain assemblies. Due to the unterminated ends, tubular coil
assemblies are always less stable than tubular ring assemblies,
with the energy difference decreasing with increasing system
size.

The apparent energy preference for coiled or tubular
structures suggests this motif for even larger systems. In
figure 2(d) we compare the relative stability of single-wall
tubes, nested multi-wall tubes, and scrolls. As before, the

reference structure is a rectangle consisting of Nc aligned
chains, each containing Nd dipoles, yielding an l = Ncd
long and w = Nd L0 wide plate. Transforming this structure
into a multi-walled nanotube is associated with a strain energy
for each component tube, given by equation (5). Same as
the inter-chain distance within the plate, we use �R =
σ
√

3/2 for the inter-wall distance in a multi-wall structure.
In sufficiently large systems, the strain energy in bending the
plate to cylinders is offset by the inter-wall attraction, which is
proportional to all the surface areas of nested tubes.

The energy associated with forming a multi-wall tubular
structure from a rectangular plate is thus given by

�U tube/ l = 2πα

�R

Nw∑

n=1

1

Rn
− β

�R
(2w−π(Rin + Rout)), (13)

where the summation extends over the walls and l is the axial
length of the multi-wall tube. Rin the radius of the innermost
and Rout that of the outermost wall, and Nw is the total number
of walls.

Unlike a multi-wall tube, which can be decomposed into
individual tubes of radius Rn , a scroll structure is contiguous,
with the radius R(θ) a function of the winding angle θ .
This fact, and the presence of two exposed edges, modifies
the expression for the formation energy of a scroll from a
rectangular plate to

U scroll/ l = 2πα

(�R)2
ln

(
Rout

Rin

)

− β

�R
(2w − π(Rin + Rout)) + γ

�R
. (14)
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Figure 3. Effect of the parameters α, β, and γ , as well as and external magnetic field H , on the chain-to-ring transition of ferrofluid
aggregates. The reference values α0, β0, and γ0 are defined in the text. We use the reference magnetic field H0 = 10 meV/μ0 = 82.27 G
in (d).

Similar to biological systems, where the shape is
determined by the presence of hydrophilic or hydrophobic
groups, also the structure of ferrofluid aggregates depends
sensitively on the interaction between the surfactant and the
immersing medium. The effect of this interaction, which also
changes the surface energy of the aggregates, is to modify
the interaction parameters α, β , and γ with respect to the
numerical reference values α0, β0, and γ0, which we provided
above for an oleic acid surfactant and kerosene as suspending
medium. In figures 3(a)–(c) we show, how changing these
parameters affects the critical size for a chain-to-ring transition.
The energy penalty γ for unterminated chains plays the most
important role, with small γ values favoring large, branched
structures, and large γ values favoring compactness. Whereas
the chain rigidity α changes the critical size for the chain-to-
ring transition linearly as expected, the effect of the inter-chain
attraction β on this transition is only secondary.

It is interesting to note that presence of a weak external
magnetic field changes the total energy of chain structures as

U mc(H ) = U mc(H = 0) − Hμ0L/L0, (15)

but does not modify the energy of other structures including
rings, coils, and tubes6. Whereas chain assemblies align with
the magnetic field, no such reorientation is expected in those
structures with a negligible total magnetic moment. The field-
induced stability enhancement of chains with respect to rings
increases the critical system size for a chain-to-ring transition,
as seen in figure 3(d).

6 We consider here the case of the dipole–dipole interaction dominating over
the field–dipole interaction. In this case, the orientation of individual dipoles
is not affected by the external field.

Finally, our theoretical results may give insight into
experimental data performed during solidification of ferrofluid
aggregates at temperatures, where thermal fluctuations become
negligible in comparison to inter-particle interactions. For a
given number of particles N , the structural transition from ring
to chain occurs at a magnetic field strength of HC(N), thus the
total magnetic moment changes from 0 to Nμ for H � HC.
Therefore, the magnetic susceptibility should peak at HC. This
susceptibility peak broadens with increasing temperature and
changes its position with changing particle concentration [15].

Except where mentioned specifically, our results are rather
general. For a particular system, the appropriate system
parameters introduced in this study can be extracted from
systematic experiments. The structural phase diagram we
found could help to experimentally control the aggregation
of magnetic particles. Further theoretical efforts are needed
in order to incorporate temperature effects [16] and kinetic
components in our model.

5. Summary and conclusions

We studied the equilibrium structure of large but finite
aggregates of magnetic dipoles, representing a colloidal
suspension of magnetite particles in a ferrofluid. We
found that with increasing system size, the structural motif
evolves from chains and rings to multi-chain and multi-ring
assemblies. Very large systems form single- and multi-wall
coils, tubes and scrolls. These structural changes result from a
competition between energy terms associated with modifying
a reference structure and can be described analytically within a
continuum approximation. Analytical expressions, based on
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the continuum model, provide universal results also for the
effect of the surfactant, the suspending liquid, and an external
magnetic field on the equilibrium structure of these aggregates.
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