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Carrier injection into carbon nanotubes and graphene nanoribbons, contacted by a metal coating over an
arbitrary length, is studied by various means: Minimal models allow for exact analytic solutions, which can be
transferred to the original system with high precision. Microscopic ab initio calculations of the electronic
structure at the carbon-metal interface allow us to extract—for Ti and Pd as contacting materials—realistic
parameters, which are then used in large scale tight-binding models for transport calculations. The results are
shown to be robust against nonepitaxially grown electrodes and general disorder at the interface, as well as

various refinements of the model.
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I. INTRODUCTION

The high electrical conductivity of metallic carbon nano-
tubes (CNTs) can be attained, thanks to a unique combina-
tion of several features. The quasi-one-dimensional crystal
structure, together with a low density of defects, allows us to
explore the theoretical limit of conductance of 4¢*/h at the
charge neutrality point. The stiffness of carbon-carbon bonds
reduces the effect of electron-phonon coupling at room
temperature.’ Also, restricting electron movement to a single
dimension results in a very small phase space, which
strongly reduces the effectiveness of scattering. A further re-
duction of backscattering is caused by the low density of
states at the Fermi energy in combination with a high Fermi
velocity. Considering all these factors, measured ballistic
lengths of several microns? become understandable. Yet, to
exploit the potential for carrying current densities of up to
10° A/cm?,? the contacts at a nanometer scale become cru-
cial.

For graphene, which has been shown to allow ballistic
transport over similar lengths,* the contacts play an equally
important role.> Finite-width graphene nanoribbons (GNRs)
are discussed as nanoelectronic devices and interconnects,
showing both similarities and distinctive differences when
compared to nanotubes. With first experimental results be-
coming available,® many of the theoretical predicions about
GNRs will soon be put to test.”1°

Experimentally, a crucial factor for obtaining good metal-
lic contacts are the wetting properties of the material. Thus, it
has been observed that Ti, Ni, and Pd form continuous coat-
ings on single-wall CNTs while Au, Al, and Fe form isolated
particles.!" Furthermore, among several common contact
metals, Ti was found to be the only one where true chemical
bonds could be observed, while the others showed only weak
van der Waals interactions.'” Surprisingly enough, Pd—
traditionally known as a rather poor conductor—was found
to form better and more reliable Ohmic contacts to CNTs
than Ti? and could be successfully applied to produce a CNT
field effect transistor with Ohmic contacts.'3 It is generally
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believed that this superiority of Pd is due to its high work
function (¢pg=5.1 eV) that matches well with that of CNTs
[e.g., di.0)cnt=5.1 eV (Ref. 14)] and thereby avoids a high
Schottky barrier. Pt, which has an even higher work function,
would therefore be expected to perform even better as a con-
tacting material, but as it turns out it does not form Ohmic
contacts at all."

A further experimental puzzle is the question of the effec-
tive length of contacts formed by a coating metal layer:
While some studies report that transport occurs only at the
edge of the contact,? others state that the contact resistance
depends on the length of the contact!® or that extended con-
tacts show a clearly distinct behavior from pointlike
contacts.!”

Various theoretical studies have been conducted to inves-
tigate these issues: In ab initio studies comparing Au, Pd,
and Pt contacting an (8, 0) CNT, Pd was found to have the
lowest Schottky barrier.'"® Another ab initio study comparing
the metal-graphene bonding of the same three metals indi-
cated a very small binding energy for Au. For Pd it is some-
what larger, while for Pt the bonding is yet stronger.'® The
bad contacts formed by Pt are here attributed to a clustering
effect of larger metal grains. Direct ab initio simulations of
transport in a metal-contacted CNT compared Pd and Au,?%?!
finding again that Pd forms superior contacts. Ti was also
found to form strong bonds to a nanotube surface?’ and to
form superior point contacts to CNTs.?

Apart from these practical issues in explaining and im-
proving the quality of materials, the study of contact models
is also of great theoretical relevance: In studying the physics
of electronic devices at the nanometer scale, it is generally
crucial to have detailed control over the contacts.2*? Indeed,
specifying properties of nanoelectronic devices is generally
completely meaningless without clearly stating the way the
system was contacted or—for theoretical studies—how the
contact was modeled.

In a previous work,?® we have demonstrated the counter-
intuitive finding that the optimal transparency in extended
contacts to CNTs is achieved not by strong chemical
bonding—as it would be the case for pointlike
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FIG. 1. (Color online) Minimal model for extended contacts

solvable analytically: a linear chain of identical atoms (one orbital
per atom) with hopping integral y between nearest neighbors. To
the left, the chain continues infinitely; at the right end, N atoms are
contacted, each by an independent wideband lead of strength A. For
defining the transmission, the system is virtually split into three
regions: the conductor C and the leads L and R.

contacts?>?”-2—but rather by contact materials that gently

couple to the tube surface, allowing us to exploit the length
of the tube-metal interface to smoothly inject the electrons
with minimal reflection at the contact.

In this paper, we will present a detailed analysis of the
model used for our previous findings. A minimal model, re-
ducing the CNT or GNR to a single atomic chain and con-
sidering a semi-infinite wire with only a single contact at one
end, allows an analytic solution that gives detailed insight in
the mechanism of an extended contact (see Fig. 1). The re-
sults from this model have a close relation to the physics of
Breit—Wigner resonances, which will be briefly sketched out
at the beginning. After a thorough analysis of the minimal
model, we will demonstrate how the results can be trans-
ferred to more realistic structures and explain in detail how
the missing parameters could be quantiatively estimated
from ab initio calculations of Pd and Ti as two typical con-
tacting materials.

II. BREIT-WIGNER RESONANCE

The conductance for a molecular junction, consisting of a
single energy level & in a two-terminal setup between two
leads, is given in terms of the left and right tunneling rates
I, and 'y by the Breit-Wigner equation3*-3?

S
h (E— 8)2 + (FL + FR)2/4 ’

G(E)= (1)
The bell-shaped peak in this expression as a function of the
energy is well known. What is rarely noted in literature,
however, is the fact that also for fixed energy E and one fixed
contact I'} , the conductance as a function of the other contact
G(I'g) has a bell shape with an optimum at the balanced
coupling I'g=T";. A new perspective to this old issue was
provided in the recent experiments by Griiter et al.3* Small
couplings (I'g <I') result in a linear I'y dependence of the
conductance typical of tunneling phenomena, while for large
coupling (I'g>T"}), such better contact I'y results in an over-
all suppressed conductance. One way to understand this
counterintuitive behavior is to consider the tunneling rate T’
as a measure for the chemical bond between the conducting
orbitals of the molecule and the lead: A strong bond to one of
the leads causes the molecule itself to virtually become part
of that lead so that we observe the physics of a single point
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FIG. 2. (Color online) Breit-Wigner resonance in the conduc-
tance of an extended molecule sandwiched between two leads. The
internal hopping is fixed as 2y=I"| to allow an optimal match to the
left contact. In the case N=1, the system is identical to the molecu-
lar junction described by Eq. (1). The transmission shows the shift
of the Breit-Wigner peak toward lower I'y with growing N. The
functional form of this shift can be approximated for large N as
I'g=Tr In N/N [see Eq. (7)].

contact. Furthermore, the strong bonding results in a strong
redistribution of the spectral weight of the energy level in the
molecule, i.e., in a low local density of states (LDOS) at the
energy €. The tunneling conductance, which directly probes
this LDOS, will therefore be suppressed by large I'g.

Once the length N of a contact is increased for an ex-
tended molecule, the optimal value decreases monotonically
with the number of contact points N, as displayed in Fig. 2.
As will be shown later [see Eq. (7)] this value scales like
I'k=T"} In N/N for large N.

III. ANALYTICAL MODEL

A minimal model that captures the essential physics of
extended contacts is set up as follows. The CNT or GNR is
represented by a linear chain of atoms with the hopping in-
tegral vy and the onsite energy =0 (fixing the energy offset).
A two-probe setup is defined by selecting an arbitrary single
electron as the “conductor” and the semi-infinite sections at
both ends as “leads”. In this unmodified setup, the system is
fully transparent, so the transmission T(E) is equal to the
number of channels Ny, at any given energy. The single
cosine-shaped band of the linear chain provides a single
transmission channel

Tband(E) = (E+ 23’)(9(_ E- 27),

which presents a theoretical upper transmission limit when
scattering at the contacts could be neglected.

An “extended contact” to the linear chain is now modeled
by replacing the semi-infinite lead by a finite N-atom chain
contacted in each atom individually by a wideband lead of
strength A. (For a sketch of the model, see Fig. 1.) A full
solution of this model is obtained by calculating the conduc-

125420-2



MODELING EXTENDED CONTACTS FOR NANOTUBE AND...

0.5F

0.0

1
1ol N=100

N=5

0.0 A=0.1v

FIG. 3. (Color online) Transmission through the system dis-
played in Fig. 1, as given in Eq. (A8). Top panel: for a fixed contact
length N, starting from low A, the transmission first improves,
reaches an optimum, and then degrades again at high A. Bottom
panel: For fixed contact strength A, transmission improves with
growing N and saturates for large N.

tance as the quantum mechanical transmission probability,

2
G(E)= 2%T(E).

This can be done within the Landauer approach to transport
by means of the Green function formalism, as shown in the
Appendix. As a result, one obtains (for £=0)

84— EY Y Im[fy(E2y—iA/4y)]
|Ely- iV = EY oA = 2fu(ER2y - iAAy)2

T(E)

with fy(x)=Uy_;(x)/ Up(x). Un(x) are the Chebyshev poly-
nomials of the second kind, as given in Eq. (A4). To gain a
full understanding of the physics described by this expres-
sion, the transmission T(E) is plotted as a function of the
energy for different values of the two parameters N and A
(i.e., the length and the quality of the contact region) in Fig.
3. Two regimes can be identified: An N-resonant regime for
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FIG. 4. (Color online) Contact reflection in the system displayed
in Fig. 1, as given in Eq. (2). At fixed contact strength A, with
growing N, the contact becomes more transparent and saturates at
an N-independent value.

low A/small N, where the transmission shows about as many
peaks as there are atoms in the contact region, and an
N-independent regime for high A/large N, where the trans-
mission shows no resonances and depends only on A.

The two different plots in Fig. 3 illustrate two aspects: For
fixed N with increasing A, the transparency of the system
improves, goes through an optimum point, and degrades
again, while for fixed A, the transparency improves with
growing N and saturates at an N-independent optimum. In
both cases, the transmission goes through the two different
regimes.

Especially the last point can be seen more clearly by look-
ing at the reflection R=1-T7 in the energy range of the single
channel of our system,

| E+iNay - B - 29y (ERy-iA/4y) | ?
| E-iNay - B2 2yf(ERy—iA4y) |

2)

In Fig. 4, this observable is plotted in a logarithmic scale,
illustrating that the average value of the transmission already
saturates at N=100 (specifically for A=0.1y). For larger val-
ues of N, the overall transparency is not improved any fur-
ther, but the N-dependent resonances are smoothed out.

To better understand the origin of this saturation, we fix
the energy to the half filling case E=¢ and study the trans-
mission and the reflection for varying contact lengths N (see
Fig. 5),

2

1 +ify(-iA/4y) G)

1 —ify(—iA/4y)

Similar data were numerically obtained before for CNTs.>* A
different insight, however, can be gained from the reflection
in a logarithmic scale: Ignoring the even-odd oscillations in
N, one observes first an exponential decay of R with increas-
ing N, followed by an abrupt crossover to an N-independent
value. Both the rate of decay and the saturation value depend
on A in such a way that for lower values of A, the transpar-
ency initially improves more slowly with the contact length,

R(E=8)=‘
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FIG. 5. (Color online) Transmission 7 (top panel) and contact
reflection R (bottom panel) in the system displayed in Fig. 1 at fixed
energy E=¢ for varying contact length N and selected values of the
contact strength A.

but ultimately R saturates at a lower value, which mean a
higher contact transparency. This result, which we presented
before based on numerical calculations on CNTs,2® will be
studied in more detail in the following using our analytical
expressions.

An expression for the N-independent regime can easily be
obtained as the limit N— o of Eq. (A6) as

2 ( VAY4 + 492 - A2 - 2y>2
T\VAY4 14y A2 +2y)
(4)

1 +if.(—iA/4y)
1 —if.(—iA/4y)

E=e _

N—oe —

which can be further simplified for A <7y to obtain

Rflzs A<y™ A;
—o, A<y 64 .

The validity of this approximation is illustrated in Fig. 6.
The approach for finding the corresponding approxima-

tion for the N-resonant regime is less rigorous since a simple

limit is not sufficient to capture the behavior in this case. A
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FIG. 6. (Color online) A dependence of the contact reflection R
for various even (upper panel) and odd (lower panel) contact
lengths N. Solid: the exact value as given in Eq. (2). Dashed: the
limit Ry_.., given in Eq. (4), along with its approximation A%/64 42,
valid for A< 1. Dotted: the approximation exp(—NA/v), valid for
even N in the N-resonant regime. The inset shows the identical data
in the semilogarithmic scale, further illustrating the precision of the
exp(—NA/y) approximation in the N-resonant regime.

far better approximation is found graphically: The straight
section in a semilogarithmic-scale plot (inset of Fig. 6) indi-
cates a clean exponential law. The missing coefficients are
easily found from a Taylor expansion in A=0, yielding

RN even — exp(— NA/y),

resonant

RN 4 — exp[— (N + 1)A/y],

resonant

both of which can be seen to fit precisely over the whole
N-resonant region.

Having found good approximations for both regimes, the
last missing piece is the crossover. For even N, the smooth
shape of the crossover in Fig. 6 suggests a simple function of
the form R=Y{A"+B" and, indeed, we find that for the case
n=1/2,

—

N even __ N even \2
Rcrossover - (V’RNHOC + \/Rresonant) (5)

gives an extremely good match over the full range of A.
Moreover, a very similar function is found to match the
crossover for odd values of N,
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Both approximations show slight deviations from the exact
value for small N but match with high precision for larger N.
Obviously, the two reflection probabilities behave like
squares of quantum mechanical amplitudes interfering either
constructively or destructively with each other.
The parameter values where R . and Ry_,.. coincide
are of special interest. In the case that N> 1, where this
coincidence happens for A <7, the condition for this is sim-

ply
exp(— NA/y) = AY/64+2,

leading to an expression for the A-dependent effective con-
tact length,

2 8
New(d) =7 1({) : ©)

over which a longer contact does not further modify trans-
port. This can be interpreted as the length that contributes to
the electron transmission for a very long contact.

The inverse of Eq. (6) can expressed using the Lambert-W
function,®

Aopt(N) = 27W(4N)/N,
which can be approximated in the range of interest as

Agp(N) =2y In N/N. (7)

A. Generalization to arbitrary injection energies

Having found the transport relations at the fixed energy
E=¢, we can now continue with generalizing the results for
E # e. Assuming the general functional form of the reflection

Riesonant = eXP(— 2NA/C¥1) s

RN—>OG = Az/ag,
we numerically find the following:
= \4y’ - EX(1+7),

which holds for arbitrary fixed N with an approximate error
estimate |{|=<1/N capturing the resonant oscillations. Con-
sidering the characteristic form of the density of states of the
linear chain,

p(E) = (m\4y* = E*)",
we can rewrite the last expression as
a; = 1/mp,

reflecting the similarity to a weak point contact where the
tunneling transmission is proportional to the density of states
on either side. The last relation could be confirmed numeri-
cally to hold very generally, as will be discussed below in the
discussion of realistic contacts to nanotubes and ribbons.

For the regime of N— o, we can similarly, i.e., numeri-
cally, find the expression
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FIG. 7. (Color online) The contact reflection for even N ob-
tained from Eq. (5). Quite visible are the two regimes separated by
the minimal line A, (N). The “exact” value for A, is the true
minimum for fixed N. The “approximate” value comes from
Eq. (7).

a = %(4)’2 -E%),
Y

which fits the exact formula [Eq. (2)] with arbitrary precision
for fixed A <y small enough and for E not too near the band
edges. Unlike the formula for «;, however, expressing «, as
a function of the density of states alone does not help to
generalize the relation to other structures.

The crossover region, generally governed by interference
effects, can be approximated by averaging over quantum me-
chanical phases, resulting in

RCI‘OSSOVGI‘ = RN—“” + Rresonam’

which gives a good approximation for the full parameter
space with N> 1, A<y, and E away from band edges. Apart
from the resonant oscillations, this now allows the full de-
scription of the reflection, and we find a precise numerical
confirmation of the previously obtained expression of the
effective contact length,

1 8y — 2F?
Ng(A) = 1 .
eff( ) '7TpA n '}’A

A complete overview of the contact reflection and both pa-
rameters N and A is shown in Fig. 7.

IV. NONDIAGONAL CONTACTS

To generalize our results beyond the diagonal contact ap-
proximation, we model the contacting metal not as a single-
parameter wideband lead but as a material with an internal
structure, leading to off-diagonal terms in the contact matrix
(see Fig. 8). Figure 9 illustrates that the off-diagonal terms in
the self-energy do not bring any qualitative changes to the
behavior described before. An exact quantitative mapping
would depend strongly on the details of the model.
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FIG. 8. (Color online) Generalized model including nondiagonal
terms: the individual wideband leads for each atom in the extended
contact region are replaced by a metal with an internal structure,
here modeled as a 2D-square lattice. The new parameters are y; and
v, describing the internal hopping in the lattice parallel and per-
pendicular to the contact surface, as well as vy, describing the hop-
ping at the contact. For simplicity, we consider only the isotropic
case y=7v,. This leaves us with the single effective parameter
A= y? /y..

V. REALISTIC CONTACTS TO CARBON
NANOSTRUCTURES

For the case of CNTs and GNRs, the method of the
Chebyshev polynomials cannot be used to obtain an analyti-
cal solution due to the the noncommutativity of the partial
Hamiltonians of the periodic structure. In numerical studies,
however, we find that the behavior is identical to that of the
linear chain, except for a quantitative adjustment of the pa-
rameters «; and a, (see Fig. 10). The N-resonant regime can
be described precisely by a simple generalization of the law
found for the linear chain

Riesonant = eXP(— 2NA/ a’l) >

ag =Nch/77p’

where N, is the number of channels and p the total density
of states per unit cell. Generally, both values are dependent
on the energy and the chirality of the tube or width and edge
geometry of the ribbon. For metallic CNTs near the Fermi
energy, however, one finds the general values of N.=2,
p=2Ny/3vdcc, and, therefore, a;=3ydcc/2ml. (v
=2.66 eV and dcc=1.42 A). Introducing the physical length
of the contact region L=¢ N with the length of the unit cell
€ > the previous formula can be rewritten as

Riesonant = eXP(— 2LA/a’leuc) s

€, = 1.80eVA.

For the N-independent regime, the general law of Ry_,.
=A/a, still holds, but the functional form of the parameter
a, at arbitrary energies could not be determined. Generally, it
turns out that «, is suppressed at van Hove singularities in a
similar way as «; is. Furthermore, metallic CNTs have a
fairly constant value of a, around Eg. At E=Ep, we find
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FIG. 9. (Color online) Nondiagonal contacts: Reflection R of the
generalized model displayed in Fig. 8. Relating the parameter A
= y?/ v, to the parameter A of the wideband leads, the results are
qualitatively similar to those of the original model (Figs. 5 and 6).
One prominent difference is the enlarged reflection R(A) for A/y
between 1 and 10: While the diagonal self-energy was uniform for
every atom along the contact, the nondiagonal self-energy now is
sensitive to the edge of the contact. For large values of A, where
only the atoms near the edge contribute to the transport, this causes
the visible deviation from the R=A2/ a3 law. The same reason is
behind the visible irregularities in the resonant oscillations of R(N).

a,=4.24y for armchair CNTs and a,=5.66 for metallic zig-
zag CNTs.

For GNRs, the situation is slightly more complex due to
the presence of edge states at zigzag edges.”®!° In metallic
ribbons with armchair edges, the situation is similar to that of
metallic CNTs, and we find a value of a,=8.0y at E=Ep.
The quantitative difference from the value of the correspond-
ing CNTs can be explained by the presence of only one con-
duction channel at the Fermi energy. For ribbons with zigzag
edges, however, our simplified model suggests that the con-
stant «, is completely suppressed at E=E due to the peak in
the density of states, caused by the edge state.

Physically, this suppressed value of both a; and a, sug-
gests that the injection of charges into the edge state via
extended leads is less efficient than that into the conduction
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FIG. 10. (Color online) Extended contacts to a (6,6) CNT (left)
and the corresponding graphene nanoribbon. Top panel: density of
states with characteristic van Hove singularities. The zigzag-edge
state in the nanoribbon causes a peak at E=E. Center panel: The
value a;=—2NA/In R, here computed for N=40 and A=107 eV,
lies already very near to the limiting case a;=N.,/mp. Bottom
panel: The value a,=A/VR is well converged for N—o and A
=10"2 eV. Note the suppression of both @; and «, in the ribbon at
Er where the presence of the localized edge state suppresses the
conductance in the contact region.

channels of nanotubes or armchair ribbons. However, taking
into account the results of detailed ab initio calculations re-
veals a spin splitting of the edge states, which strongly af-
fects the bands at the Fermi energy and opens special spin
transport channels,'® which are not captured by our model.

VI. TWO-TERMINAL SETUP AND FABRY-PEROT
PHYSICS

A realistic setup for conduction measurements in CNTs
and GNRs generally needs a second contact at the other end
of the system to close a circuit. Such a setup is well known
to lead to Fabry—Pérot-like oscillations of the conductance
along the energy range.*® For very bad contacts, Coulomb
blockade has been observed, but we intentionally avoid this
regime that would demand the inclusion of charging effects.

One important aspect of Fabry—Pérot oscillations is their
experimental use in measuring the length of the scattering
region. In the zero-bias differential conductance, the spacing
of the Fabry—Pérot resonances depends on the gate capaci-
tance C, alone as 6V,=e/C,. Only the diamond shapes in a
plot of the finite bias differential conductance

FIG. 11. (Color online) Differential conductance through a two-
terminal setup of a linear chain with symmetric, infinite-length ex-
tended contacts. The central region consists of Ngopducior=200 at-
oms. The distance between the Fabry—Pérot oscillations in the gate
voltage V, depends on the total gate capacitance C, as 6V,=e/C,.
The extent of the diamonds in direction of the bias voltage V,,
depends directly on the level spacing OE=vph/2Lonqucior
=297/ Neonductor 8 OV, =€ SE. Top: strong coupling A=107y, leading
to an extremely short effective contact length producing sharp reso-
nances and a distinct diamond pattern. Bottom: moderate coupling
A=1rvleading to an effective contact length of about four unit cells.
The oscillations have a sinoidal shape with strongly reduced ampli-
tude. For yet weaker coupling as it is to be expected for Pd or Ti,
the amplitude is rapidly reduced even further making the oscilla-
tions undetectable. In this case, a stong defect within the contact
region may act as a point of scattering and recover sharp
resonances.

2
A {VC, ), 4G, o)
av, h ep 2 ep 2

give access to the spacing of the energy levels SE=%uv/L
and can thereby be used to measure the length L; of the
resonator.

As visible in Fig. 11, however, the amplitude of these
oscillations is strongly reduced as soon as the effective con-
tact length exceeds the length of one unit cell. One could
view this situation as smooth contacts that cause the Fabry—
Pérot oscillations to be broadened and the resonator length
L to be ill defined.

In some experiments using extended contacts on CNTs,
the length of the scattering regions was measured to be just
as long as the uncovered region of the tube,” which could be
explained based on our model by a strong contact A and,
therefore, a short effective contact length. For weaker con-
tacts A, it is to be expected that Fabry—Pérot oscillations
cannot be cleanly observed any more. A point defect inside
the contacted region might, of course, act as a scattering
point instead and give rise to oscillations that indicate a reso-
nator longer than the uncovered region of the CNT.

In our previous study,® we chose to average this oscillat-
ing conductance over Er*0.5 eV in order to separate the
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FIG. 12. (Color online) Effects of two different kinds of disor-
der on extended contacts: relatively weak fluctuation disorder with
varying contact strength A; on each atom i and stronger dilution
disorder with only a randomly selected fraction of the atoms in the
contact region attached to a lead. In each case, the parameter A
refers to the average contact strength. For details, see the text.

finite-length Fabry—Pérot effects from the effects caused by
the contacts themselves. Physically, this is similar to the ther-
mal effects caused by high enough temperature. For the cho-
sen conductor length of Ly=100 nm, this approach was very
successful in canceling all Fabry—Pérot oscillations and in
reproducing the physics of a single extended contact. The
resonance oscillations within the contact were, of course,
also strongly suppressed by the averaging, leaving only a
minimal signature that we correctly identified as such.

VII. NONEPITAXIAL CONTACTS

Unlike the theoretical model contacts presented so far,
realistic samples produced in experiment are never perfectly
epitaxial but contain imperfections due to fabrication faults,
lattice mismatch, or metal faceting. To check whether the
effects described so far are robust to such perturbations, we
have investigated various kinds of disorder at the contact.
Relatively weak disorder was implemented as random fluc-
tuations of the contact parameter A on each atom i as

Afluct: A(l + f?UCtW),

with an evenly distributed random variable —1 < &< and
a parameter W specifying the relative strength of the fluctua-
tions. As can be seen in Fig. 12, even for the strongest pos-
sible value W=1, the effect of the disorder is moderate and
purely quantitative.

Even stronger disorder was realized by using a model of
diluted contacts, where only a randomly selected fraction of
the atoms in the contact region is contacted,
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Adiuted A/P  with probability P
7| 0 with probability 1 - P.

This kind of disorder modifies to the observed behavior to a
much larger degree, but even in the extreme case of a 1%
dilution (i.e., P=0.01), the general trend of the original
model is well preserved (see Fig. 12).

VIII. MATERIAL RELATED CALCULATIONS

To link the model results obtained so far to the physical
properties of real contact materials, we performed density
functional theory (DFT) calculations of Ti and Pd monolay-
ers interacting with a graphene layer as described before.?
We described the valence electrons by Troullier—Martins
pseudopotentials and used the Perdew—Zunger form of the
exchange-correlation functional in the local density approxi-
mation to DFT, as implemented in the SIESTA code.?” With a
double-zeta basis and a 100 Ry energy cutoff in the plane-
wave expansions of the electron density and potential, we
found the total energy to be converged to =1 meV/atom. We
performed a full structure optimization to determine the
equilibrium adsorption geometry, the adsorption energy, and
the local charge redistribution caused by the metal-graphene
interaction. Since the interatomic distances in bulk Pd
(2.7 A) and Ti (2.95 A) lie close to the honeycomb spacing
in graphene (2.46 A), we considered only epitaxial adsorp-
tion. For both Pd and Ti, we found a slight preference for the
sixfold hollow site on graphite. For Pd, we found the equi-
librium interlayer distance to be 3.2 A, consistent with a
relatively weak, mostly covalent bond energy of 0.3 eV per
Pd atom. The interaction between an epitaxial Ti monolayer
and graphene was only insignificantly stronger with 0.4 eV
per Ti atom at an interlayer distance of 3.0 A.

To study the electronic coupling between the two systems,
we first inspected the band structure (see Fig. 13). Especially
for Pd as a contacting metal, the extraction of parameters for
our model is greatly simplified by the fact that the band
structure of hybrid lies close to the superposition of the metal
and carbon band structures. One can see a rigid shift of the
carbon bands by E-=0.374 eV while the palladium bands
are shifted slightly in the opposite direction with AEp;=
—0.020 eV. On top of this rigid shift, one can observe slight
hybridization effects in the band structure. For injecting con-
duction electrons into a graphene sheet or the wall of a car-
bon nanotube, the most important area of the Brillouin zone
is the K point, the Fermi point of graphene. In Fig. 13, a
small avoided crossing is visible near this region in the Pd/C
band structure. To extract an estimate of tight-binding param-
eters from these data, we modeled a honeycomb lattice and a
matching hexagonal lattice representing both sheets. As it
turned out, a single orbital per atom is sufficient to obtain
bands that can be fitted to the hybridizing bands near the
Fermi level with a single parameter each. Now, an additional
coupling between the two sheets was introduced, linking
each Pd atom with its six neighboring C atoms. This hopping
parameter could then be tuned to reproduce a hybridization
between the two subsystems, which is close to that in the
hybrid bandstructure obtained from DFT, resulting in a cou-
pling of #pg,c=0.15 eV.
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FIG. 13. (Color online) Analysis of the hybridization between a
graphene sheet and a metal monolayer. As visible in the upper
scheme, the hybrid band structure matches well with an overlay of
the band structures of the two individual systems rigidly shifted in
energy and hybridization at some band crossings. Highlighted in the
Pd/C and Ti/C band structures are the regions of interest, i.e., those
hybridizations that contribute most to the electron injection.

For the case of Ti, the distortions in the band structure
caused by the hybridization of the two layers are consider-
ably stronger than for Pd. Still, the change in the carbon
related levels can be modeled by a rigid shift of AE-=
—1.15eV. To determine the hopping parameter, the same
procedure as for Pd could not be directly applied because the
relevant band of the Ti monolayer cannot be reproduced with
a single-orbital hexagonal lattice. Instead, a rough estimate
was obtained by visually comparing the band structures
themselves where the avoided crossing near the K point is at
least twice as large as for Pd, giving an estimated value of
tryc=0.3 eV.

To turn these parameters into values of A that can be
directly placed into our model calculations, we need the sur-
face density of states, which is comparable for both materials
at Nye=1 eV~!. Finally, the connectivity at the interface is
also important: Each C atom contacted to three different
metal atoms simply triples the value of A. The internal con-
nections inside the metal are already taken into account with
the surface density of states and do not have to be considered
any further. With the relation A=>\; this again gives rough
estimates of Ap;=0.06 eV and A;=0.3 eV.
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Unfortunately, this approach of computing a graphene
layer and a layer of the contacting material within a common
unit cell cannot necessarily be transferred to other materials
of interest in any straightforward way. There exist, however,
ab initio calculations of various metals in contact with
graphene or CNTs that show a clear trend:!*3%3° The highly
conducting metals Au, Ag, and Cu generally have a very
weak binding energy, insufficient for wetting the carbon sur-
face; so, a clean contact is hard to achieve. Pd, Pt, and Ti all
have sufficient binding energies for wetting the surface. Pt
and Ti both have higher binding energies than Pd. For point-
like end contacts, such strong bonds give good
transparency.23 For extended contacts, however, the weak
bonds of Pd are to be preferred.

Previous calculations'” attributed the difference between
Ti and Pd metal contacts to the formation of different-sized
metal clusters at the interface. Our results, presented above,
offer a more fundamental explanation: It is exactly the weak
bonding between Pd and graphene or CNTs—just large
enough to wet the surface—that makes Pd such an excellent
contact material.

IX. CONCLUSIONS

To conclude, we introduced a model for electrical contacts
to carbon nanotubes and graphene nanoribbons that captures
the fact that the contacts in an experimental setup typically
extend over a length of several tens of nanometers, covering
the carbon structure with some contact metal. We have dem-
onstrated the counterintuitive result that, given a metal coat-
ing of several nanometer length, the contact transparency is
actually improved by using a metal that couples more weakly
to the carbon surface. Using ab initio results of Ti and Pd as
contact metals, we have demonstrated that Pd actually forms
a weaker bond, giving an explanation of the experimental
finding that Pd forms good contacts. This finding suggests a
possible route for future attempts in optimizing the charge
injection in carbon nanotubes and graphene, that is, to find
contacting materials that couple to the carbon surface as
softly as possible to exploit the available contact length.

Starting with a detailed analysis of an analytically solv-
able minimal model, we have demonstrated by numerical
calculations that the qualitative results are robust to various
modifications of the system. Replacing the atomic wire by
the actual atomic structure of a carbon nanotube or a
graphene ribbon can be accomodated by adjusting just two
parameters at any given energy. Including a second contact
to model a realistic two-terminal conductance measurement
leads to Fabry—Pérot oscillations that can be averaged out to
give the original result. Weak disorder in the contact inter-
face has very little quantitative effect, and even strong disor-
der (similar to metal grains forming contact only in certain
points) leaves the qualitative behavior unchanged.

In view of a possible experimental confirmation of our
results, the biggest challenge may lie in the fabrication of
well-controlled finite-length contacts down below the mag-
nitude of the effective contact length of a few nanometers.
With current technology, this precision is yet out of reach,
but with future developments, it should well be possible to
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tune the geometry of contact with sufficient precision. An
alternative approach would be to tune the coupling contact
interface by some means. Direct tuning of the bonds, as it
can be done for molecular junctions,33 seems unfeasible for
this kind of geometry. Instead, the insertion of an insulating
atomic layer below the contacting metal is already being
used to improve the contacts to graphene monolayers and
might work as well for nanotubes.
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APPENDIX: ANALYTICS FOR THE ONE-DIMENSIONAL
MODEL

1. Transmission calculations

The Hamiltonian of a two-probe system for transport cal-
culations is given by

H, H,, 0
H= HcL Hc HCR s (Al)
0  Hg. Hg

where H,. describes the finite-size conductor region and H g
describes the leads, which are connected to independent res-
ervoirs and have no direct contact with each other. From H

=H" it follows that H;.=H, and Hp.=H}.

&
To simplify the notation, we first define the complex-

energy Green function
G =(E-H)"

and derive from it the expressions for the retarded and ad-
vanced Green functions (E=E * i),

G'(E)= lim G(E+in),
7—0*

GYE)= lim G(E—in).

7— ot

The transmission through this system is given by*04!

T= Tr{Fngngf}, (AZ)
with

gcz(g_Hc_zL_ER)_l»

3.=H.,GHy. a=L,R,
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I,=i(2,-%7),

ga= (E_Ha)_l~

The Hamiltonian of the model at hand, depicted in Fig. 1,
can be split up according to Eq. (A1): The conductor consists
of just one atom, so its Hamiltonian is a 1 X 1 matrix H,
=(g). The left lead is a semi-infinite chain, contacted only at
the last atom,

0 0 - 7)1><00~

The right lead consists of a chain of N atoms, each attached
to a wideband lead. This can be captured by defining an
effective Hamiltonian of the form

iA
8—3 -y N 0
iA
Y € )
H??ff: _7 ..' _’y s
iA
= =Y
0 iA
-y e——
2 NXN

(A3)
together with a contact point in the first atom only,
Hpg=(-y 0 0 0)1xn-

Note that H§' is the effective Hamiltonian containing the
retarded self-energy, so Gp=(E +iO+—H;ff)‘1 and Gi=(E
—i0*—(Hg )™,

In the following, we will simplify the notation by setting
vy=1 and €=0. Both constants can be reintroduced in the
final result [Eq. (A8)] by substituting E— (E—¢€)/ .

2. Inverse based on Chebyshev polynomials

As a starting point for a full analytical solution, we look at
a finite linear chain of length N, which has the Hamiltonian

0 -1 0

0 - =10 [y

The quantity of interest of this system is the 1, 1 matrix
element of the Green function GV(€)=(£-Hy)~". The solu-
tion is based on the Chebyshev polynomials of the second
kind,*? which can be defined via the determinant identity,
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2x 1 0
1 2x
U,(x) = det -1 ,
oo 2x 1
0 I 2x/ ,xn
or, equivalently, by the recursive definition,
|
Ap
1 Ai1n
AN =——det|] 0
A= Gam %
i+1,1
Ay
to find
[gN(g)]i,j =[(&£- HN)_I]i,j

et S U (ER) Uy (E12)
=[G E= D)
and, specifically,
e UnaE2)
= ey = IMEP )

3. Surface of semi-infinite linear chain

The surface Green function of a semi-infinite linear chain
can be defined as

Gy(&) = Iym [GNO], = ;im In(E12) = f.(E12).

To find an expression for f.,(x), we can use the recursive
definition of the Chebyshev polynomials [Eq. (A4)] and ob-
tain

Sv) =[2x = fy (077

For N— o, this becomes

falo) =[2x = f(0]",

which has two solutions f.,(x)=x(1=+\1-1/x?). On the real
axis, it follows from Eq. (A4) by induction that |fy(x)| <1
when |x|>1, so that we can select the correct solution,

fol0) =x(1 = N1 = 1/2%),

which can be continued analytically to x € C\(~1, 1) by read-
ing the square root of a complex number as the principal

(A6)
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Upx) =1,
U,(x) =2x,

Un+1(x) = 2)CU,,()C) - Un—l(x)- (A4)

We can now use the well-known identity for the matrix in-
verse,

Ajor 00 Ay Ay
Aisijor 0 Ay Ailin
0 1 0 0
Aiprjo1 0 Ay jn AN
Ayjor 0 Ay Ann

square root, uniquely defined everywl;ere except on the
negative real axis by the condition Re(yVx)=0, Vx e C.
The retarded surface Green function follows as

E2-\E4-1 for|[E|=2
E/2—iV1 —E%4 for |E[<2.
(A7)

G(E)= lim G(E+in) =

7]4>O+

4. Transmission of the model system

With these results, we can now obtain the quantum me-
chanical transmission of our model system. The left lead is a
semi-infinite chain giving a self self-energy of

S, =H.(E-H)'H,.=G(&).

For |[E|=2, G/(E) is real [see Eq. (A7)]; so, I'\—and with it
by Eq. (A2) the whole transmission T—are strictly zero. In
the following, we therefore assume |E|<2 and select the
second case in Eq. (A7),

2=

E —
—(1-iV4/E*-1).
2
To find the self-energy of the right lead, we use the definition
of H‘;’eff from Eq. (A3) and find
Sh=Hg(E—-H"+iA/2) " Hy,
=[GY(E +iA2)],, = fW(E2 +iA/4).

Now, we can put together all parts to calculate the transmis-
sion,

Gr=(E-2 -3
=2(E+iEVAIE? = 1 = 2f\(E/2 +1A/4))7!,
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G*=2(E —iENHE* - 1 = 2f\(EI2 —iA/4))7!,

[ =i(3) -39) = EN4/E> -1,

PHYSICAL REVIEW B 77, 125420 (2008)

Tp =il f(E/2 +iA/4) — Fu(E2 —iA/4)]
=2 Im[fy(E/2 - iA/4)],

84— E* Im[fy(E/2 - iA/4)]
CE-iN4 - B2 2f(EI2 - A4

(A8)

'M. Gheorghe, R. Gutiérrez, N. Ranjan, A. Pecchia, A. D. Carlo,
and G. Cuniberti, Europhys. Lett. 71, 438 (2005).

2D. Mann, A. Javey, J. Kong, Q. Wang, and H. Dai, Nano Lett. 3,
1541 (2003).

37. Yao, C. L. Kane, and C. Dekker, Phys. Rev. Lett. 84, 2941
(2000).

4A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

SH. Schomerus, Phys. Rev. B 76, 045433 (2007).

67. Chen, Y.-M. Lin, M. J. Rooks, and P. Avouris, Physica E
(Amsterdam) 40, 228 (2007).

7K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus,
Phys. Rev. B 54, 17954 (1996).

SM. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys.
Soc. Jpn. 65, 1920 (1996).

9Y.-W. Son, M. L. Cohen, and S. G. Louie, Nature (London) 444,
347 (2006).

10M, Wimmer, 1. Adagideli, S. Berber, D. Tomanek, and K. Richter,
arXiv:0709.3244 (unpublished).

1y, Zhang, N. W. Franklin, R. J. Chen, and H. Dai, Chem. Phys.
Lett. 331, 35 (2000).

12Y. Zhang and H. Dai, Appl. Phys. Lett. 77, 3015 (2000).

13A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. Wang, R. G. Gor-
don, M. Lundstrom, and H. Dai, Nano Lett. 4, 447 (2004).

14B. Shan and K. Cho, Phys. Rev. Lett. 94, 236602 (2005).

SA. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature
(London) 424, 654 (2003).

I6F Wakaya, K. Katayama, and K. Gamo, Microelectron. Eng. 67-
68, 853 (2003).

17P-W. Chiu and S. Roth, Appl. Phys. Lett. 91, 102109 (2007).

18B. Shan and K. Cho, Phys. Rev. B 70, 233405 (2004).

19 A. Maiti and A. Ricca, Chem. Phys. Lett. 395, 7 (2004).

20S.-H. Ke, W. Yang, and H. U. Baranger, J. Chem. Phys. 124,
181102 (2006).

211, 1. Palacios, P. Tarakeshwar, and D. M. Kim, arXiv:0705.1328
(unpublished).

22T. Meng, C.-Y. Wang, and S.-Y. Wang, J. Appl. Phys. 102,

013709 (2007).

23Y. Liu, Phys. Rev. B 68, 193409 (2003).

24K. W. Hipps, Science 294, 536 (2001).

25G. Cuniberti, F. GroBmann, and R. Gutiérrez, Adv. Solid State
Phys. 42, 133 (2002).

26N. Nemec, D. Tomanek, and G. Cuniberti, Phys. Rev. Lett. 96,
076802 (2006).

?7S. Krompiewski, Phys. Status Solidi A 196, 29 (2003).

28L. F. Chibotaru, S. Compernolle, and A. Ceulemans, Phys. Rev. B
68, 125412 (2003).

1. Deretzis and A. L. Magna, Nanotechnology 17, 5063 (2006).

30G. Breit and E. P. Wigner, Phys. Rev. 49, 519 (1936).

3IA. D. Stone and P. A. Lee, Phys. Rev. Lett. 54, 1196 (1985).

32G. Garcfa-Calderén, R. Romo, and A. Rubio, Phys. Rev. B 47,
9572 (1993).

3L, Griiter, F. Cheng, T. T. Heikkild, M. T. Gonzdlez, F. Diederich,
C. Schonenberger, and M. Calame, Nanotechnology 16, 2143
(2005).

34T. Nakanishi and T. Ando, J. Phys. Soc. Jpn. 69, 2175 (2000).

3R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D.
E. Knuth, Adv. Comput. Math. 5, 329 (1996).

36W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham,
and H. Park, Nature (London) 411, 665 (2001).

375, M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P.
Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matter 14,
2745 (2002).

3E. Durgun, S. Dag, V. M. K. Bagci, O. Giilseren, T. Yildirim, and
S. Ciraci, Phys. Rev. B 67, 201401(R) (2003).

YE. Durgun, S. Dag, S. Ciraci, and O. Giilseren, J. Phys. Chem. B
108, 575 (2004).

40D, S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981).

418, Datta, Electronic Transport in Mesoscopic Systems (Cambridge
University Press, Cambridge, 1999).

421, S. Gradshteyn, 1. M. Ryzhik, A. Jeffrey, and D. Zwillinger,
Tables of Integrals, Series, and Products, 6th ed. (Academic,
San Diego, 2000).

125420-12



