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Limits of mechanical energy storage and structural changes in twisted carbon nanotube ropes
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Arrays of twisted carbon nanotubes and nanotube ropes are equivalent to a torsional spring capable of storing
energy. The advantage of carbon nanotubes over a twisted rubber band, which is used to store energy in popular
toys, is their unprecedented toughness. Using ab initio and parametrized density functional calculations, we
determine the elastic range and energy storage capacity of twisted carbon nanotubes and nanotube ropes. We
find that a twisted nanotube rope may reversibly store energy by twisting, stretching, bending, and compressing
constituent nanotubes. We find that in the elastic regime, the interior of a twisted rope encounters hydrostatic
pressures of up to tens of GPa. We examine the limits of reversible energy storage and identify structural
deformations beyond the elastic limit, where irreversibility is associated with breaking and forming new covalent
bonds. Under optimum conditions, the calculated reversible mechanical energy storage capacity of twisted carbon
nanotube ropes surpasses that of advanced Li-ion batteries by up to a factor of 4 to 10.
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I. INTRODUCTION

Reversible energy storage is a topic of global importance
that calls urgently for improved storage media.1,2 Common
energy storage mechanisms include gravitational potential
energy in water reservoirs, electrical potential energy in
capacitors and batteries, nuclear potential energy in unsta-
ble isotopes, chemical potential energy in fossil fuels and
explosives, and thermal energy in steam. Mechanical energy
storage, used in wind-up watches and flywheels, has so far
received less attention for large-scale applications. The figure
of merit for energy storage media includes volumetric and
gravimetric energy density (i.e., stored energy per unit volume
or per unit mass of the storing medium), power delivery,
practical recovery efficiency, ease of use, and portability.
With an energy density of 0.72 MJ/kg, Li-ion batteries have
evolved into one of the most popular cyclable energy carriers.2

Advances in nanomaterials, in particular carbon nanotubes
(CNTs) with an unprecedented toughness,3 invite us to revisit
nanomechanical energy storage. The incentive for such a study
is an unusually high deformation energy density predicted
for reversibly twisted carbon nanotube ropes4 as well as
experimental progress in using carbon nanotubes as artificial
muscles5–7 and high-performance springs.8,9

Our study explores the usefulness of twisted carbon
nanotubes and carbon nanotube ropes as nanomechanical
energy carriers. To address this aspect of carbon nanotubes, we
performed atomistic ab initio and parametrized calculations
for a torsional spring consisting of a carbon nanotube bundle.
The advantage of carbon nanotubes over a twisted rubber band
that stores energy in popular toys is their elastic behavior
and resilience that leads to an unprecedented energy storage
capacity. Our results not only establish the elastic limits of
a stretched, twisted, bent, and compressed carbon nanotube
rope, but also identify the microscopic decay processes in
the inelastic regime. We find that within the elastic regime,
internal pressure inside a twisted carbon nanotube rope may
rise up to tens of GPa. Mapping our results onto continuum
elasticity theory allows us to decompose the energy in a twisted
rope into stretching, twisting, bending, and compression

contributions. Our results indicate that reversible mechanical
energy storage capacity of carbon nanotube systems surpasses
that of advanced Li-ion batteries by up to one order of
magnitude in the ideal case.

Past theoretical studies have mostly investigated defor-
mations associated with torsion, stretching, and bending of
individual nanotubes.10–15 Whereas all these modes occur also
in a nanotube rope, their intimate inter-connection during
the torsion of a rope has not been addressed adequately in
previous studies. As we discuss in the following, twisting a
rope subjects especially nanotubes at its surface to stretching.
The stretched nanotubes in turn subject the interior of the
rope to high hydrostatic pressures. This is the microscopic
counterpart to the well-known fact that excess water in a wet
cloth can be eliminated more efficiently by wringing than by
squeezing. We investigate this aspect of nanotube rope torsion,
which has been neglected so far, in more detail and identify
possible structural changes in closely packed, hydrostatically
compressed nanotube arrays.

II. METHODS

Deformation energy of isolated and bundled carbon
nanotubes is calculated using ab initio density func-
tional theory (DFT), as implemented in the SIESTA

code.16 We utilize the Ceperley-Alder exchange-correlation
formalism17 as parametrized by Perdew and Zunger18 and
norm-conserving Troullier-Martins pseudopotentials19 in the
Kleinman-Bylander factorized form.20 The systems of interest
are described using a double-zeta basis, including polarization
orbitals, and periodic boundary conditions for all calculations.
We sample the Brillouin zone of the periodic nanotube array
by a 2 × 2 × 8 k-point grid. The spatial extent of the localized
orbitals is limited in such a way21 that the energy shift caused
by their spatial confinement does not exceed 10 meV. The
charge density and potentials are determined on a real-space
grid with a mesh cutoff energy of 100 Ry, which is sufficient to
achieve a total energy convergence of better than 0.1 meV/unit
cell during the self-consistency iterations. All geometries are
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FTHENAKIS, ZHU, TEICH, SEIFERT, AND TOMÁNEK PHYSICAL REVIEW B 88, 245402 (2013)

optimized using the conjugate gradient method,22 until none
of the residual Hellmann-Feynman forces exceed 0.04 eV/Å.
For calculations of nanotube arrays under hydrostatic pressure,
the tolerance of the stress tensor was set to 0.1 GPa.

Since description of twisted nanotubes using conventional
periodic boundary conditions requires very large unit cells
in the axial direction, we use the density functional based
tight-binding (DFTB) (Ref. 23) adaptation of a simplified
density functional theory with a local orbital basis to systems
with helical symmetry24–26 to study deformations caused by
torsion. The helical unit cells used in a helical nanotube are a
counterpart of axial unit cells in a straight nanotube. This total
energy functional had been applied successfully to a variety
of carbon structures23 and subsequently extended to accom-
modate van der Waals interactions,27 including their proper
description in graphitic systems.27 Use of helical symmetry,
which allowed proper description of chiral nanotubes in the
past,15,26,28 turned out also to be essential to efficiently describe
the geometry and energy changes in twisted nanotubes and
nanotube ropes.

As a counterpart to atomistic simulations, we provide
simple analytical estimates of the deformation energy and the
associated energy storage potential under optimum conditions.
The main benefit of such estimates is their universality and
physical transparency.

III. RESULTS AND DISCUSSION

In the following, we determine the behavior of nanotubes
and nanotube ropes subject to different kinds of external stress.
We first discuss results of atomistic simulations that reveal
structural and energetic changes as individual nanotubes are
twisted, stretched, bent, and radially compressed in a rope.
We consider the most abundant (10,10) armchair nanotubes
and their (18,0) zigzag counterparts with the similar diameter
of 1.4 nm, as well as narrower and wider nanotubes. These
data reveal the elastic limits and provide the foundation for
a continuum elasticity description within the elastic regime.
This approach is very useful for large systems with many
nanotubes, which can not be treated with atomistic simulations.
The continuum elasticity approach not only provides a way
to estimate energy storage in ropes with many nanotubes, but
also elucidates the interplay between the different deformation
modes and provides a guideline to maximize energy storage
in a particular nanotube system.

A. Twisting of nanotubes

To characterize the deformation of a nanotube twisted about
its own axis, we first associate the angle ϕ with the axial
rotation of the nanotube cross section along a tube segment of
length l0 and define the twist rate by ϕ/l0. Using radian units
for ϕ, we may further define the dimensionless twist strain by

ε◦ = d(n,m)ϕ/l0, (1)

where d(n,m) is the diameter of an (n,m) nanotube, approx-
imately given by d(n,m) = 0.783(n2 + m2 + nm)1/2 Å. Here,
we wish to point out that the present definition of ε◦ differs
from that used in Ref. 4.

The torsion energy per atom �Et/N in (10,10) and (5,5)
carbon nanotubes is presented in Fig. 1(a). To reduce the
effect of constraints imposed by the helical symmetry, our
helical unit cell was composed of four primitive unit cells,
corresponding to 160 atoms for the (10,10) nanotube and 80
atoms for the (5,5) nanotube. Our results in Fig. 1(a) indicate
that initially undeformed nanotubes keep their circular cross
section when twisted up to a critical rate ε◦,crit � 0.5 rad. Ex-
ceeding ε◦,crit induces spontaneous flattening in the nanotube,
which is maintained even when the twist rate is gradually
reduced, giving rise to hysteretic behavior. Consequently, the
energetically more favorable flattened geometry, shown in the
structural snap shots in Fig. 1(b), is locally stable even at twist
rates ε◦ < ε◦,crit. Structural deformations of a (10,10) nanotube
subject to twisting are shown as a movie in the Supplemental
Material.29

We find that the critical twist strain, at which the circular
cross section becomes unstable, is ε◦,crit(10,10) = 0.52 rad for
the (10,10) and at a very similar value ε◦,crit(5,5) = 0.57 rad for
the (5,5) nanotube. We use the lower of these values, ε◦ = 0.52
rad, as a realistic estimate of the elastic limit, which we present
in Table I. We conclude that the deformation energy associated
with twisting may reach up to ≈1 eV/atom, a significant
fraction of the 7.3 eV/atom binding energy in graphitic
carbon, in the reversible elastic regime ε◦ < ε◦,crit. As seen
in Fig. 1(a), the deformation energy drops to ≈0.4 eV/atom
due to flattening at ε◦,crit and slowly increases within increasing
twist rate. This consideration will be important when dis-
cussing realistic energy storage in twisted nanotube ropes later
on.

Within the elastic regime, a nanotube subject to torsion can
be viewed as a torsional spring with torsional energy per atom
given by

�Et/N = k◦ε2
◦ . (2)

Quadratic fits to the calculated values of the torsional energy
�Et/N in not flattened nanotubes, shown by the solid line
for the (10,10) and the dashed line for the (5,5) nanotube in
Fig. 1(a), yield k◦(10,10) = 3.14 eV/rad2 for the (10,10) and
k◦(5,5) = 2.94 eV/rad2 for the (5,5) nanotubes. Since these
values are very similar, we list k◦(10,10) as a representative
value in Table I. This behavior is indeed expected since
twisting a nanotube corresponds locally to shearing a graphene
monolayer. As suggested above, the optimum energy storage in
the hysteretic regime, where twisted nanotubes are flattened,
is reduced by up to 60%.

B. Stretching of nanotubes

Unlike twisting, stretching does not change the number of
atoms in the axial unit cell and can thus be studied by both
DFT and DFTB. We characterize the degree of axial stretching
of a nanotube by the axial strain

ε‖ = (l − l0)/l0, (3)

where l is the length of the stretched and l0 that of the initial
unstretched nanotube segment.

Our results for the stretching energy per atom �Es/N as
a function of ε‖ are presented in Fig. 1(c) for (10,10) and
(18,0) carbon nanotubes. The DFTB calculations have been
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FIG. 1. (Color online) Energy investment and structural snap shots of an isolated carbon nanotube subject to torsion [(a), (b)], stretching [(c,
(d)], and bending [(e), (f)]. (a) Twist energy per atom �Et/N as a function of the dimensionless twist strain ε◦ of (10,10) and (5,5) nanotubes
with metastable circular or flattened cross sections. (c) Stretch energy per atom �Es/N of isolated and bundled (10,10) and (18,0) nanotubes
as a function of the axial strain ε‖. (e) Bending energy per atom �Eb/N as a function of the bending strain ε� for individual (5,5), (10,10),
(15,15), and (20,20) nanotubes. Structural snap shots in (b), (d), and (f) are presented for the (10,10) nanotube. Only the low-energy branch of
flattened nanotubes is presented in (b). All results, except where specified otherwise, are based on DFTB.

TABLE I. Energy storage in deformed carbon nanotubes and pe-
riodic nanotube arrays. �E/N represents the maximum deformation
energy per atom for a particular deformation mode and J gives the
corresponding gravimetric energy density.

Deformation Force Elastic �E/N J

mode constant (eV) limit (eV) (MJ/kg)

Twistinga k◦ = 3.14 ε◦ = 0.52 0.849 6.82
Stretching k‖ = 32.5 ε‖ = 0.12 0.468 3.76
Bendinga k� = 3.94 ε� = 0.21 0.172 1.38
Compression (A)b k⊥ = 5.32 ε⊥ = 0.19 0.576 4.62
Compression (A)c k⊥ = 5.89 ε⊥ = 0.15 0.381 3.91
Compression (C)b,c k⊥ = 1.50 ε⊥ = 0.19 0.162 1.29

aDeformation maintaining circular cross section.
bDeformation maintaining triangular lattice symmetry.
cDeformation under hydrostatic pressure.

performed for an isolated nanotube and the DFT calculations
for a triangular lattice of nanotubes in equilibrium separation.
Our DFT calculations utilize the primitive unit cells containing
40 atoms in the (10,10) and 72 atoms in the (18,0) nanotube.
To reduce artifacts of constraints associated with finite unit
cells, our axial unit cell in DFTB was composed of four
primitive unit cells, corresponding to 160 atoms for the (10,10)
nanotube. The benefit of large supercells becomes obvious
at the point of fracture that is induced by dislocations11 and
depicted in Fig. 1(d). Structural deformations of a (10,10)
nanotube subject to stretching are shown as a movie in
the Supplemental Material.29 Our calculated critical strain
value ε‖,crit≈22%, associated with the point of fracture, likely
overestimates the behavior of nanotubes containing defects at
nonzero temperature. Therefore, we list the lower observed
value30 ε

expt.
‖,crit ≈ 12% as the limit of the elastic regime in

Table I. Similar to torsion, we find that the deformation energy
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associated with stretching a nanotube in the reversible regime
may reach up to ≈0.5 eV/atom, a significant fraction of the
cohesive energy.

Within the elastic regime, a stretched nanotube can be
viewed as a linear spring, with stretching energy per atom
given by

�Es/N = k‖ε2
‖ . (4)

Quadratic fits to the calculated values of the stretching energy
�Es/N are shown by solid and dashed lines for the different
nanotubes in Fig. 1(c). The DFT data are best reproduced
by k‖(10,10) = 28.4 eV for the (10,10) and k‖(18,0) =
26.9 eV for the (18,0) nanotubes. The similarity of the values
obtained for the two nanotubes with a similar diameter reflects
the fact that the elastic behavior of nanotubes is primarily
determined by the diameter and only to a much lesser degree
by the chiral index. The DFTB data for the (10,10) nanotube
are best reproduced by k‖(10,10) = 32.5 eV. In view of the
different constraints used in DFT and DFTB calculations,
the calculated values are in reasonable agreement. For the
sake of consistency, we list the DFTB value for the (10,10)
nanotube in Table I.

C. Bending of nanotubes

In a twisted nanotube rope, individual nanotubes are also
deformed by bending. To characterize bending, we define the
bending strain as

ε � = d(n,m)/R, (5)

where d(n,m) is the nanotube diameter and R the local radius of
the bending curvature. Our results for the bending energy per
atom �Eb/N as a function of ε � are presented in Fig. 1(e) for
(5,5), (10,10), (15,15), and (20,20) nanotubes. The numerical
results are based on total energy calculations for an infinite
nanotube helix using the DFTB code. The bending energy was
determined by subtracting torsion and stretching deformation
components from total energy differences. These results were
found to agree with discrete results for finite nanotube tori
that could also be treated using specific helical boundary
conditions.

Considering a nanotube to be represented by an elastic
beam, the bending energy per atom should be described by

�Eb/N = k � ε2
� . (6)

We find indeed that our data in Fig. 1(e) are well described by
this expression. The optimum continuum elasticity represen-
tation of the numerical data, presented by lines in Fig. 1(e),
uses k � (5,5) = 4.38 eV for the (5,5) nanotube, k � (10,10) =
3.94 eV for the (10,10) nanotube, k � (15,15) = 3.71 eV for
the (15,15) nanotube, and k � (20,20) = 3.75 eV for the (20,20)
nanotube. Since these values are very similar, for the sake of
consistency, we represent them by the value obtained for the
(10,10) nanotube in Table I. Inspection of the bending energy
values in Fig. 1(e) indicates that the energetic contribution of
this deformation is significantly smaller than that of twisting
and stretching, in particular for relatively low bending strains
found in twisted nanotube ropes. Nanotube deformations in
this regime are depicted in Fig. 1(f). We associate the limit of
the elastic regime with the onset of buckling or kinking4 near

ε � = 0.21 and list this value in Table I. As we will show in the
following, effective values of ε � in nanotube ropes twisted to
the elastic limit are rather small, so that buckling or kinking
should be of no concern.

D. Compression of nanotube arrays

As mentioned above, twisting a nanotube rope subjects
its interior to hydrostatic pressure. To explore this aspect of
energy storage in carbon nanotube ropes, we performed DFT
calculations for a close-packed lattice of (18,0) nanotubes
subject to hydrostatic pressure. Our results, presented in Fig. 2,
depict changes in the total energy and equilibrium structure of
the system.

Following indications that the interior of a twisted nanotube
rope may be subject to tens of GPa pressure and that significant
structural changes occur in an ideal triangular nanotube lattice
under uniform compression,4 we have studied in more detail
how nanotube arrays behave under hydrostatic pressure. The
equilibrium arrangement of (18,0) carbon nanotubes at zero
pressure is a triangular lattice, depicted in cross section near
the top of Fig. 2(a). With no constraints on the shape of the unit
cell, we found that nanotubes subject to moderate pressures
p ≈ 1 GPa may deform at least in four different ways, which
we label A, B, C, and D. Structural deformations of (18,0)
nanotube arrays compressed along these pathways are shown
as movies in the Supplemental Material.29

As seen in Fig. 2(a), the individual nanotubes maintain the
sixfold symmetry of the lattice along the deformation pathways
A and B up to p ≈ 30 GPa, with the nanotube cross sections
deforming to a hexagon or a star. The underlying lattice
remains triangular, albeit with a decreasing lattice constant.
Deformation pathways C and D, on the other hand, involve
nanotubes undergoing elliptical deformation of their cross
section and a significant distortion of the initial triangular
lattice. The relative stability of the individual structures,
shown as compression energy per atom �Ec/N in Fig. 2(b),
suggests that symmetry breaking along pathways C and D is
energetically favorable. The increase in mass density ρg with
increasing hydrostatic pressure, shown in Fig. 2(c), is particu-
larly dramatic near p ≈ 3 GPa for pathway C and p ≈ 5 GPa
for pathway D, where nanotubes become flattened, turning into
bilayer graphene nanoribbons that start connecting to graphene
layers. Conversion to graphite, depicted in Fig. 2(a), completes
at pressures �8 GPa.

Under pressures exceeding p ≈ 30 GPa, pathways A and B
describe a plastic deformation to a rigidly connected foamlike
structure31 with an increasing fraction of sp3 bonded carbon
atoms, as seen in Fig. 2(d). We observe a rapid energy rise
along pathways A and B in the elastic regime, reaching �Ec ≈
0.8 eV/atom at p ≈ 30 GPa, close to the energy storage limits
associated with reversible torsion and stretching of individual
nanotubes. Pathways C and D display a lower-energy storage
potential �Ec ≈ 0.1 eV/atom before flattened nanotubes
convert to nanoribbons and graphite.

When describing compression energy in a rope with a finite
number Ns of nanotube strands, we will need to distinguish
nanotubes at the surface with fewer neighbors from nanotubes
in the interior of the rope. Then, it is useful to decompose our
results for the compression energy �Ec of an infinite nanotube
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FIG. 2. (Color online) Changes in the total energy and equilibrium structure of a close-packed lattice of (18,0) nanotubes subject to
hydrostatic pressure. (a) Structural changes during deformation pathways A, B, C, and D as a function of pressure, defined by the scale on the
left, in end-on view. (b) Compression energy per atom �Ec/N , (c) mass density ρg , and (d) fraction of sp3 bonded carbon atoms as a function
of hydrostatic pressure p. Conditions for abrupt structural changes are indicated by arrows.

array into pairwise interactions �Ec,ij between neighboring
tubes i and j . For small deformations in the elastic regime, the
compression energy per atom �Ec/N can then be expressed
as

�Ec/N =
∑
i>j

�Ec,ij /N, where

(7)
�Ec,ij /N = k⊥ε2

⊥,ij /Ns.

Here, the summation extends over nearest-neighbor nanotubes
only and k⊥ is the compression force constant. The compres-
sion strain of a pair of nanotubes separated by the intertube
distance dij is given by

ε⊥(i,j ) = (d0 − dij )/d0. (8)

Here, dij represents the actual and d0 the equilibrium intertube
distance, defined as interaxial distance, at zero pressure. For a
pair of nanotubes in a compressed lattice, k⊥ depends on the
specific tube deformation and relative tube orientation and is
thus not as well defined as k‖, k◦, and k � . We present k⊥ values
along with the limiting elastic deformation values in Table I
for the different pathways.

A relatively straightforward way to identify experimentally
the onset of both types of plastic deformations is to trace
changes in the radial breathing mode (RBM). We obtained the
vibration spectrum of nanotube arrays under pressure using
a Fourier transform of the velocity-velocity autocorrelation
function in DFT molecular dynamics simulations. Our results
indicate a blue-shift of the RBM with increasing pressure
along pathway C. We expect this blue-shift to occur also along

different pathways, and the RBM to disappear at the onset of
plastic deformation.

It is worth noting that structural changes induced in the
plastic regime under high pressures are permanent. In other
words, the foamlike structures formed at p > 30 GPa along
pathways A and B as well as graphene nanoribbons and
graphite formed along pathways C and D remain stable and do
not convert back to a nanotube array under decompression
down to p = 0. Even though we have not observed such
structures in atomistic simulations of twisted nanotube ropes,
we need to point out that also these foam and graphitic phases
deform under high pressures and thus may be used to store
energy, as indicated by the corresponding data in Fig. 2(b).

As part of our investigation, we also studied the effect of
compression-induced structural changes on the response of
nanotubes to tensile stress along the different pathways. To
obtain this information, we calculated the stretching energy
�Es using DFT for different values of intertube distances d

as a function of the axial strain ε‖. We found that our results
can be well reproduced using Eq. (4) in the elastic regime and
present the fitted force constants k‖ for a lattice of (18,0) as
well as (10,10) nanotubes in Table II.

Results in Table II suggest that intertube interactions and
radial compression do not cause significant changes in the axial
stretching constant k‖. This is a strong indication that stretching
and compression are nearly decoupled. Small differences
between different pathways may be linked to the occurrence
of sp3 hybridization along pathway B and its absence along
pathways A and C.

245402-5



FTHENAKIS, ZHU, TEICH, SEIFERT, AND TOMÁNEK PHYSICAL REVIEW B 88, 245402 (2013)

TABLE II. Force constants k‖ for axial stretching of (18,0)
and (10,10) nanotubes in a close-packed lattice with intertube
separation d .

System d (Å) k‖ (eV)

(18,0) lattice (pathway A) 14.6–17.0 26.0–27.8
(18,0) lattice (pathway B) 14.6–15.0 24.0–24.6
(18,0) lattice (pathway C) 14.6 26.0
(10,10) lattice 15.8–17.0 28.4–29.2

E. Equilibrium geometry of a twisted nanotube rope

A finite bundle or rope of nanotubes is represented in the
schematic Fig. 3(a). Each nanotube strand of diameter d(n,m) in
the rope is characterized by a coil of radius ρ and pitch length λ.
The coil geometry is the result of twisting, stretching, bending,
and radially compressing an initially straight free-standing
nanotube segment. So far, we have studied twisting, stretching,
and bending of each individual nanotube strand as well as
compression of nanotube arrays as decoupled deformation
mechanisms. In a twisted nanotube rope, these deformations
occur simultaneously and are coupled.

The coupling of deformation modes can be understood as
follows. Considering nanotubes in the outermost layer of the

rope, it is intuitively clear that twisting a rope causes these
nanotubes not only to twist and bend, but also to stretch at
an energy cost. To reduce the stretching energy, the surface
nanotube layer compresses the interior of the rope at the
expense of the compression energy in order to reduce the
axial stretching energy. When a rope with a finite number of
nanotube strands is subject to a given twist strain ε◦, each
nanotube strand undergoes twisting, stretching, bending, and
compression in a particular optimum way that minimizes the
total energy. The optimum geometry of selected nanotube
ropes is shown in Fig. 3(b) in end-on view and in Fig. 3(c)
in side view. Movies depicting structural changes in twisted
nanotube ropes are presented in the Supplemental Material.29

To determine the equilibrium geometry of a twisted rope,
we study in the following the contribution of all concerted
deformations to the total energy.

F. Total energy of a twisted nanotube rope

To determine the twist rate that limits the elastic regime
and to estimate the upper limit of energy storage in a twisted
nanotube rope, we combine in the following our results for
individual deformation modes. The total energy per atom
�E/N , which is stored in a twisted nanotube rope, contains
contributions from twisting, stretching, and bending of each

(6,6)-7 (18,0)-7(10,10)-6(10,10)-2 (10,10)-2(b) (c)

(18,0)-7(10,10)-6
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FIG. 3. (Color online) Structural deformations and energy storage in twisted nanotube ropes. (a) Schematic of a rope, where individual
nanotube strands of diameter d(n,m) form coils defined by radius ρ and pitch length λ. (b) End-on and (c) side view of twisted ropes with
different numbers of (n,m) nanotube strands at different values of the twist strain ε◦. (d) Total gravimetric energy storage density J of these
ropes. DFTB results are represented by the data points. The solid lines are fits to these data points using Eq. (11). The red dashed lines represent
the contribution of all energy storage mechanisms except twisting, based on Eq. (12). The notation (n,m) − Ns describes a rope containing Ns

strands of (n,m) nanotubes.
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Li-ion battery

Li-ion battery

FIG. 4. (Color online) Gravimetric energy storage density J and
its components as a function of the dimensionless twist strain ε◦ in
ropes containing 2–19 (10,10) nanotubes. Solid dots indicate branches
of those mechanisms, where the elastic limit has been reached first.
The dotted line indicates the maximum energy storage density of a
Li-ion battery.

of the Ns nanotube strands, as well as the rope compression
energy. In the elastic regime, it is given by

�E/N = �Et/N + �Es/N + �Eb/N + �Ec/N (9)

= k◦ε2
◦ + k‖

1

Ns

Ns∑
i=1

ε2
‖,i + k �

1

Ns

Ns∑
i=1

ε2
� ,i

+ k⊥
1

Ns

∑
i>j

ε2
⊥,ij . (10)

The summations extend over all Ns nanotube strands except
in the last term, where the summation covers only pairs of
adjacent nanotubes. In this expression, �E/N depends on ε◦,
which is the same for the rope and each nanotube strand, as well
as ε‖,i ,ε � ,i for each nanotube i and ε⊥,ij for each nanotube pair.
Using this expression, the energy storage in twisted ropes can
be calculated by first minimizing �E/N with respect to these
strains, taking into account the interrelation between them, as
given by Eqs. (A1) and (A2) in the Appendix. The energy
per atom can then be converted to the total gravimetric energy
density J using J = (�E/N)/(12mp), where mp is the atomic
mass unit, mp = 1.67 × 10−27 kg. Gravimetric energy storage
density and its components, which have been determined in
this way using Eq. (10), are shown in Fig. 4 for ropes containing
2–19 strands of (10,10) nanotubes.

Our results in Fig. 4 indicate that twisting dominates energy
storage in ropes with 2–4 nanotube strands. With increasing
number of nanotube strands, as the overall rope diameter
increases, the role of stretching gains in importance. As
indicated earlier, the resilience of nanotubes to being stretched
is the main reason for compression in the interior of the rope. In
ropes with 7–13 nanotubes, we find that the compressive strain
reaches the elastic limit first. In wide ropes containing more
than 19 nanotubes, the elastic regime is limited by stretching of
nanotubes in the outermost layer. Even though the significance
of bending nearly reached that of compression in the 7-rope,
we have never found a case in our studies where the elastic
range was limited by bending.

Each of the deformation mechanisms has its own elastic
limit and a maximum gravimetric energy storage density,
listed in Table I. Since the deformation mechanisms in a rope
are coupled, the energy storage is limited by the mechanism,
where the elastic limit is reached first. As we will show in the
following, depending on the number and type of nanotubes
in the rope, we find that reversible energy storage may be
limited by twisting, compression, or stretching. Deformation
mechanisms that limit the elastic regime of a particular rope
are terminated by solid dots in Fig. 4.

For a given geometry, characterized by values ε◦, ε‖,i , ε � ,i ,
and ε⊥,ij for all nanotubes and nanotube pairs, Eq. (10) pro-
vides a useful way to determine the deformation energy �E/N

of a rope. Unfortunately, this expression says little about
the indirect dependence of ε‖,i , ε � ,i , and ε⊥,ij on the twist
strain ε◦ of the entire rope. To help understand the relative sig-
nificance of the individual energy contributions, we derive in
the Appendix analytical expressions for the dependence of
axial stretching, bending, and compression strains on the
dimensionless twist strain ε◦ of the rope. As we show in the
Appendix, the energy density at low strain rates is given by

�E/N = �Et/N + �Er/N, (11)

where the torsional energy per atom �Et/N is given by Eq. (2),
and the remaining energy terms are given by

�Er/N ≈ k1ε
4
◦ + k2ε

8
◦ + O(ε12

◦ ). (12)

We wish to point out that Eq. (11) is equivalent to Eq. (A10) in
the Appendix. The gravimetric energy density estimated using
Eq. (11) is shown in Fig. 3(d), with J corresponding to �E/N

and J − Jt to �Er/N . The coefficients k◦, k1, and k2 used in
Eqs. (2), (11), and (12) are those fitted to DFTB results, listed
in Table III. Even though this expression was derived only for

TABLE III. Parameters k◦, k1, and k2 used in Eqs. (2), (11), and (12) to estimate the different contributions to the deformation energy of a
twisted nanotube rope as a function of the rope twist strain ε◦ only. Values of k1 and k2 used in Fig. 3(d) are fitted to numerical DFTB results.
Values of these quantities based on analytical expressions in the Appendix are listed for the sake of comparison.

Number of Chirality k◦ (eV) k1 (eV) k1 (eV) k2 (eV) k2 (eV)
strands Ns (n,m) (DFTB fit) (DFTB fit) [Eq. (A11)] (DFTB fit) [Eq. (A12)]

2 (10,10) 3.08 2.61 2.60 −228.66 −18.53
6 (10,10) 3.09 19.86 23.95 −2723.69 −1176.86
7 (6,6) 3.16 18.11 30.77 −698.61 −1185.19
7 (18,0) 3.11 13.08 20.04 −1279.90 −479.33
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FIG. 5. Optimum number of nanotube strands Ns,opt that maxi-
mizes energy storage in ropes of carbon nanotubes with diameter d .
The dashed line is a guide to the eye.

low twisting rates, we find these results to be in reasonable
agreement with those of Fig. 4 in the entire elastic regime.

G. Optimum energy storage in a nanotube rope

As discussed above, the energy �E stored in a twisted
nanotube rope is represented by Eq. (10). The individual en-
ergy contributions related to twisting, stretching, bending, and
compression strains depend on the diameter of the constituent
nanotubes. This energy is approximated by Eqs. (2), (11),
and (12), which express �E/N only in terms of the twist
strain ε◦ of the entire rope. The dependence of �E/N on
the diameter or related chirality of the constituent nanotubes
becomes very obvious when comparing the values of k1 and
k2 in Table III.

Obviously, the energy per atom stored in a twisted rope
with Ns strands depends on the diameter of the constituent
nanotubes. In turn, there is an optimum number of strands in
a rope capable of storing the largest energy amount �E/N

if the rope contains only nanotubes of a given diameter. The
optimum number of nanotube strands Ns,opt may be estimated
based on Eq. (A5) that is derived in the Appendix. The key
consideration in these estimates is that the elastic limit is
reached in different ways, which depend on the number of
nanotube strands and the nanotube diameter. Even though
the continuum elasticity extrapolation neglects anharmonic
terms that cause softening, this limitation should not affect
the main trend. Our results, presented in Fig. 5, indicate
that energy storage density is maximized in relatively narrow
nanotube ropes and that the optimum number of strands
increases with nanotube diameter d. Even though the typical
diameter range 10 Å � d � 15 Å of most abundant single-wall
carbon nanotubes is relatively narrow, multiwall nanotubes
have typically much larger diameters. Our calculations suggest
that ropes with a large number of multiwall carbon nanotube
strands should be very promising candidates for reversible
energy storage.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we used ab initio and parametrized density
functional calculations to calculate the mechanical energy that

can be stored reversibly in a twisted carbon nanotube rope.
This energy storage mechanism, which bears resemblance
with a twisted rubber band used to store energy in popular
toys, yields unprecedented energy storage densities due the
unusual toughness of carbon nanotubes. To realize the potential
of a twisted nanotube rope as energy storage medium,
nontrivial obstacles have to be overcome to retrieve this
energy efficiently. For one, since the stored energy is quadratic
in terms of displacement, controlled energy release requires
careful consideration. In principle, this problem is identical
to a spring in a mechanical watch, where constant energy
delivery over time is regulated by an escapement mechanism.
Encouraging first steps towards a practical realization of the
storage mechanism are the observation of a torsional nanotube
actuator7 and the engineering design of a mechanism that
converts energy stored in torsion to electrical energy.9

We find that a twisted nanotube rope may reversibly store
energy by twisting, stretching, bending, and compressing
constituent nanotubes. Our atomistic calculations allow us to
determine the elastic deformation range and the associated
energy storage density of twisted carbon nanotubes and
nanotube ropes. Our results also reveal structural deformations
beyond the elastic limit, where irreversibility is associated
with breaking and forming new covalent bonds. An important
insight provided by our study is that within the elastic
regime, the interior of a twisted rope encounters hydrostatic
pressures of up to tens of GPa. Since many substances can be
intercalated in carbon nanotube ropes and thus be subjected
to these high pressures, a twisted nanotube rope offers an
attractive low-cost alternative to a diamond-anvil cell for high-
pressure studies. Our atomistic calculations are complemented
by a linear elasticity theory description of the combined
energy storage mechanism that is not limited to single-wall
carbon nanotube ropes. We find this description to adequately
represent the atomistic results, to provide insight into the
energy partitioning in a particular system, and to estimate
the optimum rope diameter to optimize energy storage. Our
analytical estimate indicates that the reversible mechanical
energy storage capacity of twisted carbon nanotube ropes
surpasses that of advanced Li-ion batteries by up to a factor of
10 in the optimum case. Secondary effects not included in this
analytical estimate, including flattening of twisted nanotubes
at the rope surface, may reduce this factor by about one half.
Finally, in macroscopic realizations of this energy storage
mechanism, additional problems may arise due to inadequate
macroscopic contacts to nanoropes. It is beyond the scope of
this study to judge whether a practical experimental realization
of our nanomechanical energy storage mechanism will provide
a viable alternative to the state of the art. We feel that our
results, which, under optimum conditions, indicate a fourfold
to tenfold increase in energy density over Li-ion batteries, are
promising enough to justify experimental verification.

ACKNOWLEDGMENTS

We acknowledge valuable contributions to the computa-
tional approach by D.-B. Zhang and T. Dumitrica. This work
was funded by the National Science Foundation Cooperative
Agreement No. EEC-0832785, titled “NSEC: Center for
High-rate Nanomanufacturing.” G.S. was partly supported by

245402-8



LIMITS OF MECHANICAL ENERGY STORAGE AND . . . PHYSICAL REVIEW B 88, 245402 (2013)

the European Centre for Emerging Materials and Processes
Dresden (ECEMP, Project No. 10 13857/2379). The third
author’s visit to MSU was partially funded by the DAAD.
Computational resources for this project were provided by
the ZIH Dresden and the Michigan State University High-
Performance Computer Center. We thank T. Moore for
assistance with the visualization of structures.

APPENDIX

The equilibrium structure of a twisted nanotube rope may
be characterized by the optimum twisting, stretching, bending,
and compression strains of individual nanotubes and nanotube
pairs. These deformations may be determined by optimizing
the total energy expression in Eq. (10). This optimization may
be performed analytically in view of the fact that the strains
ε◦, ε‖,i , ε � ,i , and ε⊥,ij are interrelated in a given twisted rope.
Analytic expressions presented below allow us to analyze
the relative significance of particular deformation modes and
suggest ways to optimize energy storage.

In a twisted rope, the twist strain ε◦ of each individual strain
equals that of the entire rope. The axial strain ε‖,i of the coiled
strand i of the rope, represented schematically in the bottom
panel of Fig. 3(a), is given by4,32

ε‖,i =
√

1 + (ε◦ρi/d(n,m))2 − 1, (A1)

where ρi is the coil radius and d(n,m) the nanotube diameter.
Similarly, the bending strain can be expressed as

ε � ,i = ε◦
ε◦ρi/d(n,m)

(ε◦ρi/d(n,m))2 + 1
. (A2)

When optimizing the rope geometry, we need to consider that
the nanotube diameter is related to the intertube separation dij ,
which determines the coil radius ρi and also depends on the
compression strain ε⊥,ij . This reduces significantly the number
of independent variables for structure optimization. Optimiza-
tion is easiest for ropes with symmetric cross sections. Ropes
containing Ns = 2,3,4 nanotube strands do not have a central
nanotube, in contrast to ropes with Ns = 7,13,19 nanotube
strands that do have a nanotube in the center.

The maximum energy storage capacity for the individual
deformation modes is listed in Table I. The theoretical
maximum energy storage capacity J = 12.35 MJ/kg of a
twisted rope then corresponds to the sum of storage capacities
of all individual modes. This value could only be reached
if all deformation modes were to reach the elastic limit
simultaneously, which is practically never the case. In general,
among the different deformation strains ε◦, ε‖,i , ε � ,i , and ε⊥,ij ,
the maximum reversible energy storage density in a twisted
rope is determined by the deformation mode, which reaches
the elastic limit first. The other deformation modes provide
only a fraction of their maximum energy storage capacity.

To estimate the energy storage amount in a rope twisted
to its elastic limit, we first introduce the new variable
x = ε◦ρi/d(n,m) = ρiϕ/l0 that describes the deformation of
nanotube strand i subject to the twist rate ϕ/l0 in a coil of
radius ρi . Then, Eq. (A1) reduces to

ε‖,i =
√

1 + x2 − 1 (A3)

and Eq. (A2) to

ε � = ε◦
x

x2 + 1
. (A4)

If there were no limit on x, then the maximum bending
strain could be estimated using the expression in Eq. (A4).
ε � reaches its maximum at x = 1, yielding ε � ,max = ε◦/2
for the maximum bending strain. In reality, the allowed
value range of x is limited by the elastic limit of the axial
strain ε‖,max = 0.12 according to Table I, which translates to
x � 0.50 according to Eq. (A3) and thus to ε � � 0.40ε◦. At
the elastic limit of twisting ε◦,max = 0.52 according to Table I,
we find ε � ,max = 0.21 for the maximum bending strain and the
optimum coil radius ρi/d(n,m) = x/ε◦ = 0.97.

We thus conclude that for specific twisted ropes, we may be
able to simultaneously reach the elastic limits ε◦,max = 0.52,
ε‖,max = 0.12, and ε � ,max = 0.21. Neglecting compression, the
sum of twisting, stretching, and bending deformation energies
amounts to J = 11.96 MJ/kg if the ideal condition x =
ε◦ρi/d(n,m) = 0.97 may be reached by all nanotube strands
in a rope.

This condition may be achieved in a simple rope with Ns

nanotube strands and no central nanotube. All nanotubes form
corners of a polygon with Ns corners in cross section and share
the same coiling radius ρ. Ignoring the difference between 0.97
and unity for the optimum value of x/ε◦ = ρ/d(n,m), we may
approximate d(n,m) ≈ ρ. Considering the simple geometry of
the polygonal cross section of the rope, where the nanotubes
are separated by the interwall distance diw ≈ 3.0–3.5 Å, we
find

d(n,m) = diw

2 sin(π/Ns) − 1
. (A5)

Using Eq. (A5), we are able to estimate the optimum
nanotube diameter that maximizes energy storage in a rope
of Ns nanotubes. With the optimum nanotube diameters as a
function of Ns at hand, we are able to present the optimum
number of strands Ns,opt as a function of given nanotube
diameter in Fig. 5. We need to point out the limits of the model
ropes discussed here, since Eq. (A5) provides unphysical
results for Ns � 6.

The value J = 11.96 MJ/kg achieved in the simplified rope
due to twisting, stretching, and bending only is a significant
fraction of the J = 12.35 MJ/kg, given by the sum of all
decoupled deformations at their elastic limit according to
Table I. In reality, the maximum storage values shown in Fig. 4
are lower since the optimum value x = 0.97 can not be reached
by all nanotubes in a rope simultaneously.

Comparison of maximum achievable gravimetric energy
storage densities J in Table I reveals that twisting is most
important, followed by stretching, bending, and compression.
The high-energy cost of twisting is mostly due to stretching
and compression of C-C bonds, and only to a lesser degree
to changes in bond angles, often called bond bending. Our
structure optimization studies of isolated nanotubes indicate
that stretching and bending primarily cause bond bending,
which is a softer deformation mechanism. Neglecting the role
of bond stretching in these deformations, we can relate the
bending force constants to the stretching force constant by
k � = k‖/12. Using the value k‖ = 32.5 eV, given in Table I,
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this estimate yields k � = 2.71 eV, which is close to the value
k � = 3.94 eV that is listed in Table I. We also find the
elastic limit of bending to be related to that of stretching by
ε � ,max = 2ε‖,max. Using the value ε‖,max = 0.12 from Table I,
we estimate ε � ,max = 0.24, in good agreement with the value
0.21 listed in Table I.

According to Table I, depending on the deformation path,
the maximum energy density in a hydrostatically compressed
nanotube array ranges from J = 1.29–4.62 MJ/kg, thus
competing in significance with twisting and stretching. These
values represent a rope with an infinite number of strands and
no surface. Lower values occur in ropes with a finite number of
strands since the compression energy scales with the number
of pairs of adjacent nanotubes, which is reduced from 6 in the
interior to as few as 3 at the rope periphery. In the extreme
case of a 2-rope, the maximum values of J listed in Table I are
reduced by a factor of 3.

Next we derive a simplified expression for the energy
storage per atom �E/N as a useful counterpart of Eq. (10),
which uses the deformations ε◦, ε‖,i , ε � ,i , and ε⊥,ij as formally
independent quantities. Our objective is to derive an energy
expression that depends only on the twist strain ε◦ that is
externally applied to the entire rope. Using this expression, we
intend to study the relative importance of the individual strains
as a function of ε◦.

In the following derivation, we will limit ourselves to
ropes with a peripheral layer containing Ns,p nanotube strands
at a constant distance ρ = ρp > 0 from the center. Among
these, we will consider ropes with a nanotube at the center,
characterized by ρc = 0, or no central nanotube. Examples
are ropes with two strands, described by Ns = Ns,p = 2, and
with seven strands, described by Ns = 7 and Ns,p = 6. The
nanotubes at the rope periphery form a regular polygon in cross
section. Rather than specifying all intertube separations in
terms of the equilibrium value d0 = d(n,m) + diw, we introduce
the parameter λ, defined by λ = ρ/[d0(1 − ε⊥)], which com-
pletely characterizes the geometry of a radially compressed
rope. For nanotubes at equilibrium distance d0(1 − ε⊥) along
the rope periphery, we find λ = [2 sin(π/Ns,p)]−1. For small
values of the rope twist strain ε◦, Eqs. (A1) and (A2) may be
rewritten as

ε‖ ≈ 1

2

(
λd0

d(n,m)

)2

(1 − ε⊥)2ε2
◦ and

(A6)

ε � ≈ λd0

d(n,m)
(1 − ε⊥)ε2

◦ .

These relations simplify Eq. (10) to

�E

N
≈

[
k‖
4

(
λd0

d(n,m)

)4

(1−ε⊥)4 + k �
(

λd0

d(n,m)

)2

(1−ε⊥)2

]

× Ns,p

Ns

ε4
◦ + k◦ε2

◦ + k⊥
N⊥
Ns

ε2
⊥, (A7)

where N⊥ is the total number of pairs of adjacent nanotubes
in the rope. Examples are a 2-rope with N⊥ = 1 and a 7-rope
with a central nanotube and N⊥ = 12.

At a given twist strain ε◦, the optimum value of ε⊥ that
minimizes the energy can be obtained from ∂(�E/N )/∂ε⊥ =

0. This is equivalent to

k‖

(
λd0

d(n,m)

)4

(1 − ε⊥)3ε4
◦ + 2k �

(
λd0

d(n,m)

)2

(1 − ε⊥)ε4
◦

− 2k⊥
N⊥
Ns,p

ε⊥ = 0. (A8)

Equation (A8) suggests that ε⊥ is a function of ε4
◦ . For small

values, we obtain

ε⊥ = 1

2k⊥

Ns,p

N⊥

[
k‖

(
λd0

d(n,m)

)2

+ 2k �
]

×
(

λd0

d(n,m)

)2

ε4
◦ + O(ε8

◦ ). (A9)

The approximation is valid for ε◦ � 0.1, before the terms of
the order O(ε8

◦ ) become important.
With the above expressions we are now able to roughly

estimate the energy dependence of the individual deformation
mechanisms on the twist strain of the rope only. The energy
contribution of twisting has an ε2

◦ dependence. The energy
contributions of stretching and bending have an ε4

◦ dependence
for ε◦ � 0.1. Correcting terms for these modes share the same
ε8
◦ dependence with compression. This analysis explains why

twisting energy dominates at low values of ε◦ and loses its
leading role at higher twist rates.

The simplified energy storage expressions for the individual
deformation modes may now be combined to

�E/N ≈ k◦ε2
◦ + k1ε

4
◦ + k2ε

8
◦ + O(ε12

◦ ), (A10)

where

k1 = Ns,p

4Ns

[
k‖

(
λd0

d(n,m)

)2

+ 4k �
](

λd0

d(n,m)

)2

(A11)

and

k2 = − 1

4k⊥

N2
s,p

N⊥Ns

[
k‖

(
λd0

d(n,m)

)2

+ 2k �
]2(

λd0

d(n,m)

)4

.

(A12)

Equations (A10)–(A12) correspond to Eqs. (2), (11), and (12).
Close inspection of Fig. 3(d) reveals that the functional

form in Eq. (A10) reproduces the numerical DFTB results
adequately in the range ε◦ � 0.2. The values of k◦, k1, and k2

used in the fitted functions of Fig. 3(d) are listed in Table III.
We found it instructive to compare these fitted values to

estimates based on Eqs. (A11) and (A12). These estimates,
obtained using d0 = d(n,m) + diw with diw = 3 Å, are listed in
Table III alongside the DFTB fits. For most nanotube ropes,
we find the fitted values of k◦ to agree closely with the value
k◦ = 3.14 eV listed in Table I. With the exception of the 2-rope,
the fitted values of k1 are somewhat smaller than the values
estimated using Eq. (A11). This reflects the fact that the elastic
response due to stretching, bending, and compression is, to
some degree, affected by the degree of torsion especially in
ropes with many strands. The value of k2 gains importance
in Eq. (A10) especially at higher twist rates. All values of
k2 that are listed in Table III are negative since the elastic
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response to torsion is expected to soften at high twist rates.
There are sizable differences between the values fitted to DFTB
calculations and those estimated using Eq. (A12), which is
not surprising in view of the fact that energy contributions
in Eq. (A10), which have k2 as prefactor, are much smaller
than those with k1 as prefactor at small values of ε◦, where
this equation is valid. An additional reason for the differences

in the listed values of k2 is that the compression pathways
found in the atomistic DFTB calculations of the ropes may
differ somewhat from those found in infinite nanotube lattices.
In spite of these limitations, we find the simple expression
in Eq. (A10) to be surprisingly accurate and capable of
semiquantitatively estimating the total energy storage capacity
of a twisted nanotube rope.
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23D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, and R. Kaschner,

Phys. Rev. B 51, 12947 (1995).
24D.-B. Zhang, M. Hua, and T. Dumitrică, J. Chem. Phys. 128, 084104
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