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As an alternative to atomistic calculations of long-wavelength acoustic modes of atomically thin layers, which
are known to converge very slowly, we propose a quantitatively predictive and physically intuitive approach based
on continuum elasticity theory. We describe a layer, independent of its thickness, by a membrane and characterize
its elastic behavior by a (3×3) elastic matrix as well as the flexural rigidity. We present simple quantitative
expressions for frequencies of long-wavelength acoustic modes, which we determine using two-dimensional
elastic constants calculated by ab initio density functional theory. The calculated spectra accurately reproduce
observed and calculated long-wavelength phonon spectra of graphene and phosphorene, the monolayer of black
phosphorus. Our approach also correctly describes the observed dependence of the radial breathing mode
frequency on the diameters of carbon fullerenes and nanotubes.
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I. INTRODUCTION

With the emergence of graphene as one of the hottest re-
search topics in recent years, interest in quasi-two-dimensional
(quasi-2D) materials has been rising steadily. An important
characteristic of these systems is phonon spectra. State-of-
the-art atomistic calculations of phonon frequencies based on
ab initio density functional theory (DFT) start with the calcu-
lation of the Hessian (or force-constant) matrix using energy
differences associated with finite displacements of all atoms
in the unit cell. The phonon frequencies are then obtained
from the eigenvalues of the dynamical matrix constructed
from the Hessian matrix. This approach works very well for
all phonons except for long-wavelength acoustic modes in
quasi-2D systems. There, all practical implementations require
the use of very large supercells, dense k meshes, and a highly
converged basis to obtain a sufficiently accurate dynamical
matrix. Even small inaccuracies caused by computer resource
limitations commonly lead to imaginary frequencies in long-
wavelength flexural acoustic (ZA) modes [1,2]. This artifact
has nothing to do with a structural instability but is rather
intrinsic to the way the dynamical matrix is constructed
and diagonalized. Even though this shortcoming does not
affect other modes much, its unphysical consequences have
been discussed widely. So far, no practicable, predictive, and
accurate alternative approach has been proposed to determine
the frequency of long-wavelength ZA modes, which—among
others—play an important role in the thermal conductivity of
graphene nanoribbons [3].

To address the long-standing problem with the computation
of long-wavelength flexural ZA modes in atomically thin
layers, we propose a quantitatively predictive and physically
intuitive approach based on continuum elasticity theory. We
describe a layer, independent of its thickness, by a membrane
and characterize its elastic behavior by a (3×3) elastic matrix
as well as the flexural rigidity D. We present simple quantita-
tive expressions for frequencies of long-wavelength acoustic
ZA and—for the sake of completeness—for the longitudinal
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acoustic (LA) and transverse acoustic (TA) modes, which we
determine using 2D elastic constants calculated by ab initio
density functional theory. The calculated spectra accurately
reproduce observed and calculated long-wavelength phonon
spectra of graphene and phosphorene, the monolayer of
black phosphorus. Our approach also correctly describes the
observed dependence of the radial breathing mode frequency
(RBM) on the diameters of carbon fullerenes and nanotubes.

The use of continuum elasticity theory as a means to deter-
mine the frequencies of long-wavelength acoustic phonons is
well established [4], including its extension to plates of finite
thicknesses [5,6]. Elastic constants have also been related to
specific phonon modes in graphene [7–10]. Yet, independent
of thickness, any plate can be mapped onto a 2D elastic
membrane. Even though quantifying its elastic response to
uniform static stress is all that is needed to correctly reproduce
all three acoustic branches in the long-wavelength limit, this
knowledge has been used only in a limited fashion to calculate
phonon spectra of quasi-2D systems. In the following, we
introduce a (3×3) elastic stiffness matrix for 2D membranes
and relate it to the commonly used (6×6) elastic matrix for
three-dimensional (3D) systems. We then derive quantitatively
predictive and simple expressions for long-wavelength acous-
tic phonon frequencies in these structures based on the 2D
elastic constants and flexural rigidity D, which we determine
using static DFT calculations for the deformation energy of
unit cells with few atoms. The quadratic frequency dependence
on the crystal momentum for ZA and the linear dependence
for LA and TA modes is quantitatively reproduced near the
Brillouin-zone center using these 2D elastic constants and D.
Clearly, our approach is limited to long-wavelength acoustic
modes. To obtain the full phonon spectrum, these results
can be combined with those of atomistic DFT calculations,
which do not display convergence problems for optical and
short-wavelength acoustic modes.

II. CONTINUUM APPROACH FOR LONG-WAVELENGTH
ACOUSTIC MODES OF AN ELASTIC MEMBRANE

A free-standing thin slab of any substance, independent
of its effective thickness, can be mapped onto an elastic
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FIG. 1. (a) Schematic of possible distortions of an elastic mem-
brane. (b) Schematic dependence of the LA, in-plane TA, and the ZA
mode vibration frequencies on the crystal momentum near the center
of the Brillouin zone.

membrane that resists deformations as illustrated in Fig. 1(a).
In the harmonic limit, the elastic response of this two-
dimensional system, considered to lie on the x-y plane, is
described by the (3×3) 2D elastic stiffness matrix, which is
given in Voigt notation by⎛

⎝c11 c12 0
c12 c22 0
0 0 c66

⎞
⎠. (1)

c11 and c22 describe the longitudinal strain-stress relationship
along the x and y directions, respectively. c66 describes the
elastic response to in-plane shear. In an elastic isotropic
plate, c11 = c22, c66 = (c11 − c12)/2, and the Poisson ratio
α = c12/c11. In a 2D plate represented by a membrane, the
dimension of the elastic stiffness constants cij is (N/m). The
elastic response of the corresponding 3D system consisting of
weakly interacting layers separated by interlayer spacing dil

is described in Voigt notation by a (6×6) Cij matrix of elastic
stiffness constants with the dimension (N/m2). The relation
between the two elastic matrices is given by cij = dilCij .

The flexural response to out-of-plane stress is described by
the flexural rigidity D of the plate, which may be anisotropic.
D can be calculated by considering the energy cost associated
with rolling up a rectangle of length L to a tube with diameter
d. Assuming that L and d are large enough to ignore edge
effects, we obtain

D = 1
2εbd

2, (2)

where εb is the bending strain energy divided by the surface
area of the tube, which is close to the area of the initial
rectangle.

III. CALCULATION OF ACOUSTIC PHONON MODES OF
AN ELASTIC MEMBRANE IN THE CONTINUUM LIMIT

It is well established that near the Brillouin-zone center,
the frequency of LA and TA modes show a linear dependence
on the crystal momentum k, whereas the ZA mode frequency
increases as k2 as seen in Fig. 1(b). As shown in the Appendix,
the frequencies of the three acoustic modes of an elastic

membrane can be determined quantitatively using only the
elastic constants c11, c22, c66, and D. These elastic constants
can be either calculated or obtained experimentally. Also
needed is the 2D mass density ρ2D , which is easily determined
using the atomic mass numbers and the area of the optimized
unit cell.

For acoustic modes with linear dispersion, we get

ωLA,1 =
√

c11

ρ2D

k (3)

for the LA mode along the x direction with the value of the
square root giving the longitudinal speed of sound in the x

direction. Similarly, we get

ωLA,2 =
√

c22

ρ2D

k (4)

for the LA mode along the y direction with the value of the
square root giving the longitudinal speed of sound in the y

direction. Finally, we get

ωT A =
√

c66

ρ2D

k (5)

for the in-plane TA modes in the x and y directions with the
value of the square root giving the transverse speed of sound
in those directions. In anisotropic plates, acoustic modes in an
arbitrary in-plane direction have mixed LA and TA characters,
and their speed varies in a complicated way with the direction
[5].

As shown in the Appendix, the flexural ZA mode displays
an unusual quadratic frequency dependence on the crystal
momentum. Its frequency is given by

ωZA =
√

D

ρ2D

k2, (6)

where the value of the flexural rigidity D depends on the
bending direction in an anisotropic material.

The schematic dependence of the acoustic mode frequen-
cies ω of a zero-thickness plate on the crystal momentum k,
given by Eqs. (3)–(6), is shown in Fig. 1(b). We note that these
expressions, albeit not in the notation of the 2D elastic matrix,
have been obtained previously [10–12].

Expressions describing the deformation of an elastic mem-
brane can also be used to determine the frequency of the
RBM. Previously derived theoretical expressions [13] and
experimental observations are being used commonly as an
indirect way to determine the diameter of carbon fullerenes
and nanotubes [14].

As shown in the Appendix, we obtain

ωCn
= 2

d

√
2c11

ρ2D

(7)

for the RBM frequency of a spherical Cn fullerene with
diameter d. Similarly, the RBM frequency of a carbon
nanotube (CNT) of radius d is given by

ωCNT = 2

d

√
c11

ρ2D

. (8)
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IV. COMPUTATIONAL APPROACH TO DETERMINE THE
ELASTIC CONSTANTS

We determine the elastic response of atomically thin
graphene and phosphorene monolayers using ab initio DFT
as implemented in the SIESTA [15] code. We used the Perdew-
Burke-Ernzerhof [16] exchange-correlation functional, norm-
conserving Troullier-Martins pseudopotentials [17], and a
double-ζ basis including polarization orbitals. To determine
the energy cost associated with in-plane distortions, we sam-
pled the Brillouin zone of a 3D superlattice of noninteracting
layers by a 20×20×1 k-point grid [18]. To determine the
strain energy associated with flexural motion, we constructed
and optimized single-wall nanotubes and sampled their 3D
superlattices by a 20×1×1 k-point grid. We used a mesh
cutoff energy of 180 Ry and an energy shift of 10 meV in our
self-consistent total energy calculations, which has provided
us with precision in the total energy of �2 meV/atom.

V. RESULTS

A. Graphene

Graphene is known to display isotropic elastic behavior.
Our DFT calculations yield the (3×3) 2D elastic stiffness
matrix of Eq. (1),

⎛
⎝c11 c12 0

c12 c22 0
0 0 c66

⎞
⎠ =

⎛
⎝352.6 59.6 0

59.6 352.6 0
0 0 146.5

⎞
⎠ N/m. (9)

These values are in very good agreement with experimental
and other theoretical results [19], including the value of the
Poisson ratio α = c12/c11 = 0.17, which is very close to the
observed value of 0.19 based on high-resolution electron-
energy-loss spectroscopy (HREELS) [20].

The calculated 2D mass density of graphene is ρ2D =
0.743 × 10−6 kg/m2 and the calculated value of the flexu-
ral rigidity D = 1.40 eV = 0.224 GPa nm3 lies close to the
previously estimated value [10] of D ≈ 1.0 eV. Using the
numerical values listed in Eq. (9) and the above value of D,
we can determine the three acoustic branches of graphene
near the � point using Eqs. (3)–(6). Our results are presented
in Fig. 2(a), superposed on those of a more recent ab initio
calculation [21] that agrees very well with the observed and
fitted phonon spectra of graphene [22].

First of all, we notice excellent agreement with the linear
LA and TA modes, which indicates that the calculated speed
of sound agrees with the observation. Specifically, the calcu-
lated speed of sound with in-plane longitudinal polarization
vLA,th = 22.1 km/s agrees very well with the observed value
of vLA,expt = 22.0 km/s obtained using HREELS [20]. Simi-
larly, the speed of sound with in-plane transverse polarization
vT A,th = 14.2 km/s agrees very well with the observed value
[20] of vT A,expt = 14.0 km/s.

Agreement between calculated and observed ZA modes
indicates that the calculated flexural rigidity value correctly
reproduces the elastic response of graphene to bending.

FIG. 2. Phonon spectra of (a) graphene, reproduced from
Ref. [21] and (b) phosphorene, a monolayer of black phosphorus,
reproduced from Ref. [23], shown by the solid lines. Superposed on
the spectra are continuum results for the three acoustic phonon modes
in different high-symmetry directions, evaluated near �, with the LA
(dashed lines), in-plane TA (dotted lines), and the flexural acoustic ZA
(solid lines) modes. Ball-and-stick models of the structure, including
the primitive unit cells, are shown in the top panels. The Brillouin
zones are shown as insets in the phonon spectra.

B. Phosphorene

Unlike graphene, phosphorene is strongly anisotropic.
It is much softer under compression along the x (or a1)
direction than along the y (or a2) direction. The optimized
rectangular unit cell is defined by a1 = 4.63 Å and a2 =
3.35 Å according to our DFT studies. With four atoms per unit
cell, the 2D mass density of phosphorene is ρ2D = 1.34 ×
10−6 kg/m2. Our numerical values of c11 = 24.4 N/m and
c22 = 94.6 N/m reflect the strong anisotropy in the in-plane
longitudinal elastic response. The calculated speed of sound
with LA polarization is vLAX,th = 4.3 km/s along the soft
�-X direction and vLAY ,th = 8.4 km/s along the stiff �-Y
direction.

The transverse acoustic phonon frequency depends on the
in-plane shear and is described by our calculated value of
c66 = 22.1 N/m. The corresponding speed of sound with TA
polarization is vT A,th = 4.1 km/s.

Finally, we find also the flexural rigidity to be highly
anisotropic. We find D(�-X) = 1.55 eV = 0.248 GPa nm3

when bending phosphorene along the x (or a1) direction,
yielding a tube with its axis aligned along the y (or a2)
direction. Bending along the y (or a2) direction, we find
D(�-Y ) = 7.36 eV = 1.179 GPa nm3.

These data are sufficient to reproduce the three acoustic
branches of phosphorene along the �-X and �-Y directions
near � using Eqs. (3)–(6) and are presented in Fig. 2(b). In anal-
ogy to graphene, our results are superposed on phonon spectra,
which—in the absence of experimental phonon spectra—are
based on atomistic DFT calculations of phosphorene [23].
We notice particularly good agreement between the two
approaches along the stiff �-Y direction. As we expand in
the Discussion, the continuum results deviate from those of
the atomistic study along the soft �-X direction, which—at

165432-3



DAN LIU, ARTHUR G. EVERY, AND DAVID TOMÁNEK PHYSICAL REVIEW B 94, 165432 (2016)

FIG. 3. RBM in (a) fullerenes and (b) carbon nanotubes as a
function of their diameter d . Our prediction is shown by the solid
line. Experimental and theoretical RBM frequencies for the only
observed fullerene with spherical symmetry C60 are shown by the data
points in (a). The experimentally well-established relationship [14,24]
ω = 248 cm−1 × (1 nm/d) in the nanotubes in (b) is represented by
the dashed line, and our calculation is shown by the solid line.

close inspection—predicts small imaginary ZA frequencies
near �.

C. Vibration spectra of carbon fullerenes and nanotubes

The RBM frequency ωRBM of Cn fullerenes may be
calculated using Eq. (7) and that of carbon nanotubes using
Eq. (8) in combination with the elastic constants provided in
the section on graphene. The expected dependence of ωRBM

on the diameter d is displayed in Fig. 3(a) for fullerenes and in
Fig. 3(b) for CNTs. The RBM mode is Raman active, and its
frequency is known to depend primarily on the diameter. Thus,
the RBM frequency is commonly used to judge the diameter
of carbon nanostructures.

According to Eq. (7), the RBM frequency of spherical
fullerenes should scale inversely with their diameters. But
only one spherical fullerene, namely, C60 with d = 7.1 Å
forms a molecular solid. We find the predicted value of
ωRBM,th(C60) = 467 cm−1 to lie very close to the observed
RBM frequency of ωRBM,expt(C60) = 497 cm−1.

The well-documented observed diameter dependence of
the RBM in nanotubes [14] ωRBM,expt(CNT) = 248 cm−1 ×
(1 nm/d) is reproduced by the dashed line in Fig. 3(b). Based
on continuum theory and Eq. (8), we find ωRBM,th(CNT) =
234 cm−1 × (1 nm/d) in very good agreement with the ob-
served behavior.

VI. DISCUSSION

So far, the most common description of a layer by
continuum elasticity theory has been that of a finite-thickness
plate consisting of a material characterized by a (6×6)
elastic stiffness matrix. As we show here, this approach is
unnecessarily cumbersome since every 2D system of finite
thickness may be mapped onto an elastic membrane with the
same mass density. The resistance of the realistic system, such
as graphene or phosphorene, to stretching, shear, and bending
becomes that of the elastic membrane. The advantage of this
approach, which does not suffer from ambiguities about the
“real” thickness of an atomic layer, has been discussed before
[7,8]. The unconventional units of the 2D elastic stiffness
matrix in Eq. (1) are well adapted to ultrathin layers.

Our approach appears particularly suitable when describing
the ZA mode in soft atomically thin atomic layers, such as
phosphorene. As mentioned earlier during the discussion of
Fig. 2(b), the required precision of the dynamical matrix has
not been reached in the calculation of phonon modes near �

along the �-X direction [23]. This is a common shortcoming
of ab initio phonon calculations in layered solids. Among the
eigenvalues of the dynamical matrix, which are proportional
to ω2, the one associated with the ZA mode often turns out
to be negative, yielding nominally an imaginary frequency,
as a numerical artifact. The small error in the ZA frequency
eigenvalue is also reflected in other close-lying eigenvalues,
such as those of the LA and TA modes, at the same crystal
momentum. This is clearly reflected in Fig. 2(b). We believe
that the present continuum approach is much better adapted
to describe long-wavelength acoustic modes and should be
preferred to atomistic phonon calculations near �.

As seen in Fig. 2(b), the LA and TA mode frequencies are
very similar along the soft �-X direction in phosphorene. This
is unusual, but not unexpected in view of the accordionlike
structure depicted in the ball-and-stick model in the top panel
of Fig. 2(b). Making an analogy to a real accordion, it appears
equally easy to produce a longitudinal and a transversal motion
while the instrument is being played. Since the TA speed of
sound is the same along the �-X and the �-Y directions, the
TA mode is clearly distinguished in its softness from the LA
mode along the hard �-Y direction. In this rigid direction in
space, small imprecisions in the dynamical matrix play a much
less important role than along the soft direction. Therefore,
our continuum results agree well with the phonon frequencies
obtained using the atomistic approach for all three acoustic
branches.

In the Appendix section on the radial breathing motion
of carbon nanostructures, we have shown in Eq. (A52) that
the RBM frequency of nanotubes does not show a pure 1/d

behavior as a function of the nanotube diameter. For single-
wall carbon nanotubes with typical diameters between 1 nm
and 2 nm, the value of the correction 4D/(c11d

2) is indeed
negligibly small in comparison to 1. This need not be the case
in nanotubes of other substances with large values of D and
small values of c11. In postulated phosphorene nanotubes [25],
c11 differs significantly from c22, and D is strongly anisotropic.

Finally, we have shown in Eq. (2) how to estimate the
value of D in a layered material by calculating the strain
energy in nanotubes with a very large diameter d. Optimizing
wide nanotubes using ab initio techniques is nontrivial. The
values for D quoted in the section on phosphorene required
DFT calculations containing more than 14 unit cells along
the perimeter of phosphorene nanotubes bent along the soft
x (or a1) direction. For nanotubes bent along the rigid y (or
a2) direction, D(d→∞) was extrapolated using 10, 12, 14,
16, and 18 unit cells along the perimeter of the corresponding
phosphorene nanotubes.

VII. SUMMARY AND CONCLUSIONS

In conclusion, as a viable alternative to atomistic calcula-
tions of long-wavelength acoustic modes of atomically thin
layers, which are known to converge very slowly, we have
proposed a quantitatively predictive and physically intuitive
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approach based on continuum elasticity theory. We describe
a layer, independent of its thickness, by a membrane and
characterize its elastic behavior by a (3×3) elastic matrix
as well as the flexural rigidity D. We have derived simple
quantitative expressions for frequencies of long-wavelength
acoustic ZA and—for the sake of completeness—for the LA
and TA modes. These frequencies are determined using 2D
elastic constants obtained from ab initio DFT calculations for
the deformation energy of unit cells with few atoms. We found
that the calculated spectra accurately reproduce observed
and calculated long-wavelength phonon spectra of graphene
and phosphorene, the monolayer of black phosphorus. Our
approach also correctly describes the observed dependence of
the radial breathing mode frequency on the diameter of carbon
fullerenes, such as C60 and carbon nanotubes.
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APPENDIX

The most fundamental way to determine vibration motion
in any system starts with a Lagrangian from which the Euler-
Lagrange equations of motion can be derived by applying
Hamilton’s principle of least action. In the following, we de-
termine the Lagrangians that describe stretching, shearing, and
bending of an infinitely thin elastic plate. Using these Lagrange
functions, we derive the equations of stretching, shearing, and
bending motions of the plate. Finally, we derive the Lagrangian
describing the radial breathing motions of carbon fullerenes
and nanotubes and determine the corresponding equations of
motion for the RBM in these nanostructures.

1. Lagrange function of an infinitely thin
elastic plate under strain

a. Stretching

Let us consider a thin plate suspended on the xy plane and
its response to in-plane tensile strain applied uniformly along
the x direction,

dux

dx
= const. (A1)

The resulting energy density caused by tensile strain along the
x direction is then given by

U = 1

2
c11

(
dux

dx

)2

, (A2)

where c11 describes the elastic stiffness to tensile strain. In the
harmonic regime, we will consider only small strain values.
Releasing the strain will cause a vibration in the x direction
with the velocity vx = dux/dt . Then, the kinetic-energy

density will be given by

T = 1

2
ρ2D

(
dux

dt

)2

, (A3)

where ρ2D is the 2D mass density. The Lagrangian density is
then given by

L
(

dux

dx
,
dux

dt
,x,t

)
= T − U

= 1

2

[
ρ2D

(
dux

dt

)2

− c11

(
dux

dx

)2]
.

(A4)

In an anisotropic plate, the x and y directions are not
equivalent. To describe the y response to in-plane tensile strain
applied uniformly along the y direction, we have to replace x

by y and c11 by c22 in Eqs. (A1)–(A4), yielding the Lagrangian
density,

L
(

duy

dy
,
duy

dt
,y,t

)
= T − U

= 1

2

[
ρ2D

(
duy

dt

)2

− c22

(
duy

dy

)2]
.

(A5)

b. Shearing

The derivation of the Euler-Lagrange equation for the shear
motion is very similar to that for the stretching motion. The
main difference is that the displacement u is normal to the
propagation direction. To obtain the corresponding equations,
we need to replace ux by uy and c11 by c66 in Eqs. (A1)–(A4).
The Lagrangian density is then given by

L
(

duy

dx
,
duy

dt
,x,t

)
= T − U

= 1

2

[
ρ2D

(
duy

dt

)2

− c66

(
duy

dx

)2]
.

(A6)

c. Bending

Bending a thin plate suspended on the xy plane in order to
achieve a radius of curvature R requires displacements uz(x)
along the normal z direction that are described by

d2uz

dx2
= 1

R
. (A7)

The resulting bending energy density is then given by

U = 1

2
D

(
d2uz

dx2

)2

, (A8)

where D is the flexural rigidity. In the harmonic regime,
we will consider only small strain values corresponding
to R → ∞. Releasing the strain will cause a vibration in
the z direction with the velocity vz = duz/dt . Then, the
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kinetic-energy density will be given by

T = 1

2
ρ2D

(
duz

dt

)2

, (A9)

where ρ2D is the 2D mass density. This leads to the Lagrangian
density,

L
(

d2uz

dx2
,
duz

dt
,x,t

)
= T − U

= 1

2

[
ρ2D

(
duz

dt

)2

− D

(
d2uz

dx2

)2]
.

(A10)

2. Derivation of Euler-Lagrange equations of motion
for deformations of an infinitely thin elastic plate

using Hamilton’s principle

a. Stretching

The Lagrangian specified in Eq. (A4) has the form
L(dux/dx,dux/dt,x,t). In this case, we have two independent
variables x and t and can define the action S by

S =
∫ t2

t1

dt

∫ x2

x1

dx L
(

dux

dx
,
dux

dt
,x,t

)
. (A11)

Hamilton’s principle of least action yields

δS = δ

∫ t2

t1

dt

∫ x2

x1

dx L
(

dux

dx
,
dux

dt
,x,t

)
= 0. (A12)

This can be modified to

δS =
∫ t2

t1

dt

∫ x2

x1

dx

[
L

(
dux

dx
+ δ

dux

dx
,
dux

dt
+ δ

dux

dt
,x,t

)

−L
(

dux

dx
,
dux

dt
,x,t

)]
. (A13)

and

δS =
∫ t2

t1

dt

∫ x2

x1

dx

[
∂L

∂ dux

dx

δ
dux

dx
+ ∂L

∂ dux

dt

δ
dux

dt

]
. (A14)

This expression can be reformulated to

δS =
∫ t2

t1

dt

∫ x2

x1

dx

[
d

dt

(
∂L

∂ dux

dt

)
+ d

dx

(
∂L

∂ dux

dx

)]
δux.

(A15)

For δS to vanish, the quantity in the square brackets in
Eq. (A15) must vanish. This leads to the Euler-Lagrange
equation,

d

dt

(
∂L

∂ dux

dt

)
+ d

dx

(
∂L

∂ dux

dx

)
= 0. (A16)

Inserting the Lagrangian of Eq. (A4) in the Euler-Lagrange
Eq. (A16) yields the wave equation for longitudinal in-plane
vibrations,

ρ2D

d2ux

dt2
− c11

d2ux

dx2
= 0. (A17)

This wave equation can be solved using the ansatz,

ux = ux,0e
i(kx−ωt) (A18)

to yield

ρ2Dω2 = c11k
2. (A19)

This finally translates to the desired form

ω =
√

c11

ρ2D

k, (A20)

which is identical to Eq. (3).
In an anisotropic plate, we need to use the Lagrangian of

Eq. (A5) to describe motion along the y direction and obtain

ω =
√

c22

ρ2D

k, (A21)

which is identical to Eq. (4).

b. Shearing

The Lagrangian L(duy/dx,duy/dt,x,t) in Eq. (A6), which
describes the shearing motion, has the same form as the
Lagrangian in Eq. (A4). To obtain the equations for shear
motion from those for stretching motion, we need to replace
ux by uy and c11 by c66 in Eqs. (A11)–(A20). Thus, the equation
for shear motion becomes

ω =
√

c66

ρ2D

k, (A22)

which is identical to Eq. (5).

c. Bending

The Lagrangian specified in Eq. (A10) has the unconven-
tional form L(d2uz/dx2,duz/dt,x,t). In this case, we have
two independent variables, namely, x and t and can define the
action S by

S =
∫ t2

t1

dt

∫ x2

x1

dx L
(

d2uz

dx2
,
duz

dt
,x,t

)
. (A23)

Hamilton’s principle of least action yields

δS = δ

∫ t2

t1

dt

∫ x2

x1

dx L
(

d2uz

dx2
,
duz

dt
,x,t

)
= 0. (A24)

This can be modified to

δS =
∫ t2

t1

dt

∫ x2

x1

dx

[
L

(
d2uz

dx2
+ δ

d2uz

dx2
,
duz

dt
+ δ

duz

dt
,x,t

)

−L
(

d2uz

dx2
,
duz

dt
,x,t

)]
, (A25)

and

δS =
∫ t2

t1

dt

∫ x2

x1

dx

[
∂L

∂
d2uz

dx2

δ
d2uz

dx2
+ ∂L

∂
duz

dt

δ
duz

dt

]
. (A26)

Finally, we can rewrite this expression as

δS =
∫ t2

t1

dt

∫ x2

x1

dx

[
d

dt

(
∂L
∂

duz

dt

)
− d2

dx2

(
∂L

∂
d2uz

dx2

)]
δuz.

(A27)

For δS to vanish, the quantity in the square brackets in
Eq. (A27) must vanish. This leads to the Euler-Lagrange
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equation,

d

dt

(
∂L
∂

duz

dt

)
− d2

dx2

(
∂L

∂
d2uz

dx2

)
= 0. (A28)

Inserting the Lagrangian of Eq. (A10) for flexural motion in
the Euler-Lagrange Eq. (A28) yields the wave equation for
flexural vibrations,

ρ2D

d2uz

dt2
+ D

d4uz

dx4
= 0. (A29)

This wave equation can be solved using the ansatz,

uz = uz,0e
i(kx−ωt) (A30)

to yield

ρ2Dω2 = Dk4. (A31)

This finally translates to the desired form

ω =
√

D

ρ2D

k2, (A32)

which is identical to Eq. (6).

3. Radial breathing mode of spherical fullerenes

Let us consider a spherical fullerene molecule, such as C20

or C60, with the equilibrium radius R. Except for the presence
of 12 pentagons, the surface is covered by hexagonal carbon
rings so that the 2D mass density ρ2D can be taken as that of
graphene. Similarly, R can be estimated using the number of
C atoms in the fullerene and the unit-cell area in graphene.
According to continuum elasticity theory, the total bending
strain energy of any such spherical fullerene, independent of
R, is given by [26]

Ub = 4πD(1 + α), (A33)

where D is the flexural rigidity and α is the Poisson ratio of
graphene. In other words, changing the radius of the fullerene
by δR will not affect the total bending energy.

Allowing the equilibrium radius R of the fullerene to change
by δR results, on the other hand, in a quadratic increase in the
tensile strain energy,

Ut = 2 × 1

2
[4πR2c11]

(
δR

R

)2

. (A34)

The (radial) kinetic energy of a radially expanding or contract-
ing fullerene, shown schematically in the inset of Fig. 3(a), is
given by

T = 1

2
[4πR2ρ2D]

(
d

dt
δR

)2

, (A35)

and the Lagrangian by

L = T − U

= T − Ut

= 1

2
[4πR2ρ2D]

(
d

dt
δR

)2

− [4πR2c11]

(
δR

R

)2

= 4πR2

[
1

2
ρ2D

(
d

dt
δR

)2

− c11

(
δR

R

)2]
. (A36)

Hamilton’s principle of least action,

∂L
∂(δR)

− d

dt

(
∂L

∂
(

d
dt

δR
))

= 0 (A37)

leads with the Lagangian of Eq. (A36) to the Euler-Lagrange
equation,

−c11
2δR

R2
= ρ2D

d2

dt2
δR. (A38)

With the ansatz,

δR = δR0e
iωt , (A39)

we obtain

ω = 1

R

√
2c11

ρ2D

, (A40)

which is identical to Eq. (7).

4. Radial breathing mode of carbon nanotubes

Let us now consider a carbon nanotube that has been
rolled up from a rectangular graphene nanoribbon of width
2πR0, length L, and the 2D mass density ρ2D . According to
continuum elasticity theory, the total bending strain energy of
any such nanotube is given by [26]

Ub = πDL

R0
, (A41)

where D is the flexural rigidity of graphene. Increasing the
radius by the small amount δR, whereas still δR/R0 � 1,
changes the potential energy of the nanotube with respect to
the value at R0 by

�Ub(δR) = πDL

R0

[
− δR

R0
+

(
δR

R0

)2]
, (A42)

where higher than quadratic terms have been neglected in the
Taylor expansion.

We consider the initial nanotube of radius R0 to be free of
tensile strain energy. In this case, the change in tensile strain
energy associated with the radius increase by δR is

�Ut (δR) = 1

2
[2πR0c11]L

(
δR

R0

)2

. (A43)

The equilibrium value of δR can be obtained by minimizing
�Ub + �Ut ,

∂(�Ub + �Ut )

∂(δR)
= 0. (A44)

This leads to

δR ≈ D

2c11R0
, (A45)

and the equilibrium value of the nanotube radius becomes
R = R0 + δR,

R = R0

(
1 + D

2c11R
2
0

)
. (A46)

R is the radius, around which the RBM vibrations take place.
We use the total potential energy U of the nanotube at the
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equilibrium radius R as the reference energy. Then, changing
the equilibrium nanotube radius R by an arbitrarily small value
of δR increases the potential energy of the nanotube by

U = 1

2
[2πRL]

(
D

R4
+ c11

R2

)
(δR)2. (A47)

The (radial) kinetic energy of a radially expanding or contract-
ing nanotube, shown schematically in the inset of Fig. 3(b), is
given by

T = 1

2
[2πRρ2DL]

(
d

dt
δR

)2

. (A48)

The Lagrangian for this motion is

L = T − U

= [πRρ2DL]

(
d

dt
δR

)2

− [πRL]

(
D

R4
+ c11

R2

)
(δR)2.

(A49)

Using Hamilton’s principle of Eq. (A37), we get the Euler-
Lagrange equation,

ρ2D

d2(δR)

dt2
= −

(
D

R4
+ c11

R2

)
δR. (A50)

Using the ansatz,

δR = δR0e
iωt , (A51)

and referring to the nanotube diameter d = 2R, we obtain

ω = 2

d

√
c11

ρ2D

(
1 + D

c11R2

)
. (A52)

For a nanotube with a typical diameter of d = 1 nm, using the
values of c11 and D for graphene, we find that the bending
correction 4D/(c11d

2) ≈ 1 × 10−3 is negligibly small. In this
case, we obtain

ω = 2

d

√
c11

ρ2D

, (A53)

which is identical to Eq. (8).
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[14] D. Tománek, Guide Through the Nanocarbon Jungle (IOP,
Bristol, U.K., 2014).

[15] E. Artacho, E. Anglada, O. Dieguez, J. D. Gale, A. Garcia, J.
Junquera, R. M. Martin, P. Ordejon, J. M. Pruneda, D. Sanchez-
Portal, and J. M. Soler, The siesta method; developments and
applicability, J. Phys.: Condens. Matter 20, 064208 (2008).

[16] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient
Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[17] N. Troullier and J. L. Martins, Efficient pseudopotentials for
plane-wave calculations, Phys. Rev. B 43, 1993 (1991).

[18] H. J. Monkhorst and J. D. Pack, Special points for brillouin-zone
integrations, Phys. Rev. B 13, 5188 (1976).

[19] K. V. Zakharchenko, M. I. Katsnelson, and A. Fasolino,
Finite Temperature Lattice Properties of Graphene Beyond the
Quasiharmonic Approximation, Phys. Rev. Lett. 102, 046808
(2009).

[20] A. Politano, A. Raimondo Marino, D. Campi, D. Farı́as, R.
Miranda, and G. Chiarello, Elastic properties of a macro-
scopic graphene sample from phonon dispersion measurements,
Carbon 50, 4903 (2012).

[21] L. Wirtz and A. Rubio, The phonon dispersion of graphite
revisited, Solid State Commun. 131, 141 (2004).

[22] R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G.
Dresselhaus, Phonon modes in carbon nanotubules, Chem. Phys.
Lett. 209, 77 (1993).
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