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Long-wavelength deformations and vibrational modes in empty and liquid-filled
microtubules and nanotubes: A theoretical study
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We propose a continuum model to predict long-wavelength vibrational modes of empty and liquid-filled
tubules that are very hard to reproduce using the conventional force-constant matrix approach based on atomistic
ab initio calculation. We derive simple quantitative expressions for long-wavelength longitudinal and torsional
acoustic modes, flexural acoustic modes, as well as the radial breathing mode of empty or liquid-filled tubular
structures that are based on continuum elasticity theory expressions for a thin elastic plate. We furthermore
show that longitudinal and flexural acoustic modes of tubules are well described by those of an elastic beam
resembling a nanowire. Our numerical results for biological microtubules and carbon nanotubes agree with
available experimental data.
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I. INTRODUCTION

Tubular structures with diameters ranging from nanometers
to meters abound in nature to fill various functions. The
elastic response of most tubular structures is dominated by
low-frequency flexural acoustic (ZA) modes. Much attention
has been devoted to the nanometer-wide carbon nanotubes
(CNTs) [1], which are extremely stiff [2], and to their flexural
modes [2–5]. Correct description of soft flexural modes in stiff
quasi-1D systems like nanotubes and nanowires is essential for
calibrating nanoelectromechanical systems used for ultrasen-
sitive mass detection and radio-frequency signal processing
[3,6]. In CNTs and in related graphene nanoribbons, flexural
ZA modes have also been shown to significantly influence
the unsurpassed lattice thermal conductivity [7]. Much softer
microtubules formed of tubulin proteins, with a diameter
d ≈ 20 nm, are key components of the cytoskeleton and
help to maintain the shape of cells in organisms. In spite
of their importance, there are only scarce experimental data
available describing the elastic behavior of microtubules. The
conventional approach to calculate the frequency spectrum
is based on an atomistic calculation of the force-constant
matrix. This approach often fails for long-wavelength acoustic
modes, in particular the soft flexural ZA modes, due to an
excessive demand on supercell size and basis convergence.
Typical results of this shortcoming are numerical artifacts such
as imaginary vibration frequencies [8].

Here we offer an alternative way, based on continuum
elasticity theory [9] and its extension to planar [10] and
tubular structures [11–13], to predict the frequency of acoustic
modes in quasi-1D structures such as empty and liquid-filled
tubes consisting of stiff graphitic carbon or soft tubulin
proteins. While the scope of our approach is limited to
long-wavelength acoustic modes, the accuracy of vibration
frequencies calculated using the simple expressions we derive
surpasses that of conventional atomistic ab initio calculations.
Our approach covers longitudinal and torsional modes, flexural
modes, as well as the radial breathing mode. We show that

*tomanek@pa.msu.edu

longitudinal and flexural acoustic modes of tubules are simply
related to those of an elastic beam resembling a nanowire.
Since the native environment of tubulin nanotubes contains
water, we specifically consider the effect of a liquid on the
vibrational modes of tubular structures. Our numerical results
for tubulin microtubules and carbon nanotubes agree with
available experimental data.

II. CONTINUUM ELASTICITY APPROACH

A 1D tubular structure of radius R can be thought of as
a rectangular 2D plate of width 2πR that is rolled up to a
cylinder. Consequently, the elastic response of 1D tubules
to strain, illustrated in Figs. 1(a)–1(d), is related to that of
the constituting 2D plate. To describe this relationship in the
linear regime and calculate the frequency of long-wavelength
vibrational modes in 1D tubular structures, we take advantage
of a continuum elasticity formalism that has been successfully
adapted to 2D structures [10].

As shown earlier [10], elastic in-plane deformations of a
plate of indefinite thickness may be described by the (3×3)
2D elastic stiffness matrix, which is given in Voigt notation by⎛

⎜⎝
c11 c12 0

c12 c22 0

0 0 c66

⎞
⎟⎠. (1)

Resistance of such a plate to bending is described by the
flexural rigidity D. For a plate suspended in the x-y plane,
c11 and c22 describe the longitudinal strain-stress relationship
along the x and y direction, respectively. c66 describes the
elastic response to in-plane shear. For an isotropic plate,
which we consider here, c11 = c22, c66 = (c11 − c12)/2, and
the in-plane Poisson ratio α = c12/c11. Considering a 3D
plate of finite thickness h, characterized by the (6×6) elastic
stiffness matrix Cij , the coefficients of the 2D elastic stiffness
matrix cij for the equivalent plate of indefinite thickness are
related by cij = hCij (1 − α2

⊥). This expression takes account
of the fact that stretching a finite-thickness slab of isotropic
material not only reduces its width by the in-plane Poisson
ratio α, but also its thickness by the out-of-plane Poisson ratio
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FIG. 1. Schematic representation of important deformations of
a tubular structure. (a) Longitudinal acoustic (LA, stretching),
(b) torsional acoustic (TA, torsion), (c) flexural acoustic (doubly
degenerate ZA, bending), and (d) the radial breathing mode (RBM).
(e) Schematic dispersion relations of the corresponding long-
wavelength phonon modes. The tilde denotes liquid-filled tubules.

α⊥. This consideration is not needed for layered compounds
such as graphite, where the interlayer coupling is weak and
α⊥ ≈ 0, so that cij = hCij . In near-isotropic materials like
tubulin, however, α⊥ ≈ α and cij = hCij (1 − α2).

A. Vibrational modes of empty nanotubes

We now consider an infinitely thin 2D plate of finite width
2πR and an areal mass density ρ2D rolled up to a nanotube
of radius R that is aligned with the x axis. The linear mass
density of the nanotube is related to that of the plate by

ρ1D = 2πRρ2D. (2)

In the long-wavelength limit, represented by k = (2π/λ) → 0,
the longitudinal acoustic mode of a tubular structure, depicted
in Fig. 1(a), resembles the stretching mode of a 2D plate [10].
As mentioned above, the equivalent plate we consider here is
a strip of finite width that is reduced during stretching due to
the nonzero in-plane Poisson ratio α.

In the following, we illustrate our computational approach
for a tubular structure by focusing on its longitudinal acoustic
mode. Our derivation, which is described in more detail in
Appendices A and B, starts with the Lagrange function density

L
(

dux

dx
,
dux

dt
,x,t

)
= T − U

= 1

2

[
ρ2D

(
dux

dt

)2

− c11

(
1 − α2

)(
dux

dx

)2]
2πR

= 1

2

[
ρ1D

(
dux

dt

)2

− cLA

(
dux

dx

)2]
, (3)

where

cLA = c11(1 − α2)2πR (4)

is the longitudinal force constant of a 1D nanowire equivalent
to the tubule, and the relation between ρ1D and ρ2D is defined

in Eq. (2). The resulting Euler-Lagrange equation is

d

dt

(
∂L

∂ dux

dt

)
+ d

dx

(
∂L

∂ dux

dx

)
= 0. (5)

Using the ansatz

ux = ux,0e
i(kx−ωt) (6)

we obtain the vibration frequency of the longitudinal acoustic
(LA) mode of the nanotube or nanowire from

ωLA =
√

c11(1 − α2)

ρ2D

k =
√

cLA

ρ1D

k. (7)

The prefactor of the crystal momentum k is the longitudinal
speed of sound. As already noted in Ref. [14], the frequency
of the LA mode is independent of the nanotube radius.

The torsional mode, depicted in Fig. 1(b), is very similar
to the shear mode of a plate. Consequently, as shown in
Appendix B, the vibration frequency of the torsional acoustic
(TA) mode of the nanotube and the transverse acoustic mode of
the plate should be the same. With c66 describing the resistance
of the equivalent plate to shear, we obtain

ωT A =
√

c66

ρ2D

k. (8)

Again, the prefactor of the crystal momentum k is the
corresponding speed of sound. Similarly to the LA mode, the
frequency of the TA mode is independent of the nanotube
radius [14].

The doubly degenerate flexural acoustic (ZA) mode, de-
picted in Fig. 1(c), differs significantly from the corresponding
bending mode of a plate [10] that involves the plate’s flexural
rigidity D. The continuum elasticity treatment of the bending
deformation, described in Appendices A and B, leads to

ωZA =
√

πR3c11

ρ1D

(
1 + D

c11R2

)
k2 =

√
Db

ρ1D

k2

= cZA(R)k2. (9)

Here, cZA is the effective bending force constant and Db is the
effective beam rigidity of a corresponding nanowire, defined
in Eq. (A16).

Finally, the radial breathing mode (RBM) of the nanotube,
depicted in Fig. 1(d), has a nearly k-independent frequency
given by [10]

ωRBM = 1

R

√
c11

ρ2D

. (10)

The four vibration modes described above and their functional
dependence on the momentum k and radius R have been
partially described before using an elastic cylindrical shell
model [12,13]. The schematic dependence of the vibration
frequencies of these modes on k is shown in Fig. 1(e). The
main expressions for the vibration frequencies of both 2D and
tubular 1D structures are summarized in Table I.

B. Vibrational modes of liquid-filled nanotubes

We next consider the nanotubes completely filled with a
compressible, but viscosity-free liquid that may slide without
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TABLE I. Summary of expressions derived for the vibrational
frequencies ω of 1D tubules and 2D plates. ω̃ denotes the frequency
of liquid-filled tubules. Equation numbers refer to the present
publication.

Mode 1D Tubules Equation 2D Platesa

LA ωLA =
√

c11(1−α2)
ρ2D

k Eq. (7) ωLA =
√

c11
ρ2D

k

ωLA =
√

cLA

ρ1D
k Eq. (7)

ω̃LA = ωLA

TA ωT A =
√

c66
ρ2D

k Eq. (8) ωT A =
√

c66
ρ2D

k

ω̃T A = ωT A

ZA ωZA =√
πR3c11

ρ1D

(
1 + D

c11R2

)
k2 Eq. (9) ωZA =

√
D

ρ2D

ωZA =
√

Db

ρ1D
k2 Eq. (9)

ω̃ZA =√
πR3c11

ρ̃1D

(
1 + D

c11R2

)
k2 Eq. (14)

ω̃ZA =
√

Db

ρ̃1D
k2 Eq. (14)

RBM ωRBM = 1
R

√
c11
ρ2D

Eq. (10)

ω̃RBM � ωRBM Eq. (15)

aReference [10].

resistance along the nanotube wall [15]. Since the nanotubes
remain straight and essentially maintain their radius during
stretching and torsion, the frequency ω̃ of the LA and TA
modes is not affected by the liquid inside, which remains
immobile during the vibrations. We thus obtain

ω̃LA(k) ≈ ωLA(k) (11)

and

ω̃T A(k) = ωT A(k), (12)

where the tilde refers to filling by a liquid.
The only effect of filling by a liquid on the flexural modes

is an increase in the linear mass density to

ρ̃1D = ρ1D + πR2ρl, (13)

where ρl denotes the gravimetric density of the liquid. In
comparison to an empty tube, described by Eq. (9), we observe
a softening of the flexural vibration frequency to

ω̃ZA =
√

πR3c11

ρ̃1D

(
1 + D

c11R2

)
k2 =

√
Db

ρ̃1D

k2

= c̃ZA(R)k2. (14)

Finally, as we expand in Appendix C, the effect of the contained
liquid on the RBM frequency will depend on the stiffness of the
tubular container. For stiff carbon nanotubes, the RBM mode is
nearly unaffected, whereas the presence of an incompressible
liquid increases ω̃RBM in soft tubules. Thus,

ω̃RBM � ωRBM. (15)

The schematic dependence of the four vibration modes on the
momentum k in liquid-filled nanotubes is shown in Fig. 1(e).

The main expressions for the vibration frequencies of liquid-
filled tubular 1D structures are summarized in Table I.

III. VIBRATIONAL MODES OF NANOTUBES
IN A SURROUNDING LIQUID

From among the four long-wavelength vibrational modes of
nanotubes illustrated in the left panels of Fig. 1, the stretching
and the torsional modes are not affected by the presence
of a liquid surrounding the nanotube. We expect the radial
breathing mode in Fig. 1(d) to couple weakly and be softened
by a small amount in the immersing liquid. The most important
effect of the surrounding liquid is expected to occur for the
flexural mode shown in Fig. 1(c).

The following arguments and expressions have been de-
veloped primarily to accommodate soft biological structures
such as tubulin-based microtubules, which require an aqueous
environment for their function. We will describe the surround-
ing liquid by its gravimetric density ρl and viscosity η. As
suggested above, we will focus our concern on the flexural
long-wavelength vibrations of such structures.

As we will show later on, the flexural modes of idealized,
freestanding biological microtubules are extremely soft. In
that case, the velocity of transverse vibrations will also be
very small and definitely lower than the speed of sound in the
surrounding liquid. Under these conditions, the motion of the
rodlike tubular structure will only couple to the evanescent
sound waves in the surrounding liquid and there will be no
radiation causing damping. The main effect of the immersion
in the liquid will be to increase the effective inertia of the rod.
We may assume that the linear mass density ρ1D of the tubule
in vacuum may increase to ρ̃1D = ρ1D + 	ρ1D in the sur-
rounding liquid. We can estimate 	ρ1D = 	Aρl , where 	A

describes the increase in the effective cross-section area of
the tubule due to the surrounding liquid that is dragged along
during vibrations. We expect 	A � πR2, where R is the radius
of the tubule. The softening of the flexural mode frequency
ω̃ZA due to the increase in ρ1D is described in Eq. (14).

Next we consider the effect of viscosity of the surrounding
liquid on long-wavelength vibrations of a tubular structure that
will resemble a rigid rod for k → 0. Since—due to Stoke’s
paradox—there is no closed expression for the drag force
acting on a rod moving through a viscous liquid, we will
approximate the rod by a rigid chain of spheres of the same
radius, which are coupled to a rigid substrate by a spring.
The motion for a rigid chain of spheres is the same as of a
single sphere, which is damped by the drag force F = 6πηRv

according to Stoke’s law, where v is the velocity.
The damped harmonic motion of a sphere of radius R and

mass m is described by

m
d2u

dt2
= −mω2

0u − 6πηR
du

dt
. (16)

With the ansatz u(t) = u0e
iωt , we get

−mω2 = −mω2
0 − iω6πηR (17)

and thus

ω = ±
√

ω2
0 −

(
3πηR

m

)2

+ i
3πηR

m
. (18)
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Assuming that the damping is small, we can estimate the
energy loss described by the Q factor

Q = ω0
m

3πηR
= 2

3

m

R

f0

η
, (19)

where f0 = ω0/(2π ) is the harmonic vibration frequency. In a
rigid string of masses separated by the distance 2R, the linear
mass density is related to the individual masses by ρ1D =
m/(2R). Then, the estimated value of the Q factor will be

Q = 4

3
ρ1D

f0

η
. (20)

IV. COMPUTATIONAL APPROACH TO DETERMINE THE
ELASTIC RESPONSE OF CARBON NANOTUBES

We determine the elastic response and elastic constants
of an atomically thin graphene monolayer, the constituent
of CNTs, using ab initio density functional theory (DFT) as
implemented in the SIESTA [16] code. We use the Perdew-
Burke-Ernzerhof (PBE) [17] exchange-correlation functional,
norm-conserving Troullier-Martins pseudopotentials [18], and
a double-ζ basis including polarization orbitals. To determine
the energy cost associated with in-plane distortions, we sam-
pled the Brillouin zone of a 3D superlattice of noninteracting
layers by a 20×20×1 k-point grid [19]. We used a mesh
cutoff energy of 180 Ry and an energy shift of 10 meV in our
self-consistent total energy calculations, which has provided
us with a precision in the total energy of �2 meV/atom. The
same static approach can be applied to other layered materials
that form tubular structures.

V. RESULTS

To illustrate the usefulness of our approach for all tubular
structures, we selected two extreme examples. Nanometer-
wide CNTs have been characterized well as rigid structures
able to support themselves in vacuum. Tubulin-based micro-
tubules, on the other hand, are significantly wider and softer
than carbon nanotubes. These biological structures require an
aqueous environment for their function.

A. Carbon nanotubes

The elastic behavior of carbon nanotubes can be described
using quantities previously obtained using DFT calculations
for graphene [10]. The calculated elements of the elastic
stiffness matrix (1) are c11 = c22 = 352.6 N/m, c12 = 59.6
N/m, and c66 = 146.5 N/m, all in very good agreement with
experimental results [20]. The calculated in-plane Poisson
ratio α = c12/c11 = 0.17 is also close to the experimentally
estimated value for graphene [20] of αexpt = 0.19. The calcu-
lated flexural rigidity of a graphene plate is D = 0.22 GPa nm3.
The calculated 2D mass density of graphene ρ2D = 0.743 ×
10−6 kg/m2 translates to ρ1D = 0.743 × 10−6 kg/m2 × 2πR

for nanotubes of radius R.
The phonon dispersion relations ω(k) depend primarily

on the radius and not the specific chiral index (n,m) of
carbon nanotubes and are presented in Fig. 2(a) for the
different polarizations. The LA and TA mode frequencies are
almost independent of the nanotube radius for a given k. The

c Z
A

(c
m

-1
nm

2 )

R (nm)

(empty CNT)

(a) (b)

ZA
(R=1nm)

LA TA

RBM (R=1nm)

(c
m

-1
)

k (nm-1)

ZA
(R=1 nm)

~

(water filled CNT)

FIG. 2. (a) Frequency of vibrational modes depicted in Fig. 1(a)
in empty and water-filled carbon nanotubes. (b) Dependence of the
flexural coefficient cZA(R), defined in Eq. (9), on the radius R of
empty and water-filled carbon nanotubes. The tilde denotes liquid-
filled nanotubes.

corresponding group velocities at k → 0 give the longitudinal
speed of sound of vLA = dωLA/dk = 21.5 km/s and the speed
of sound with torsional polarization of vT A = dωT A/dk =
14.1 km/s.

The flexural or bending ZA mode does depend on the
nanotube radius through the proportionality constant cZA(R),
defined in Eq. (9), which is plotted as a function of R in
Fig. 2(b). The dispersion of the ZA mode in a CNT of radius
R = 1 nm is shown in Fig. 2(a). Also the RBM frequency
depends on the nanotube radius according to Eq. (10). We find
the value

√
c11/ρ2D = 116 cm−1 nm of the prefactor of R−1

in Eq. (10) to agree well with the published theoretical value
[21] of 116 cm−1 nm and with the value of 108 cm−1 nm,
obtained by fitting a set of observed Raman frequencies [22].
The calculated value ωRBM = 116 cm−1 for CNTs with R = 1
nm is shown in Fig. 2(a).

Filling the CNT with a liquid of density ρl increases its
linear density ρ1D according to Eq. (13). For a nanotube filled
with water of density ρl = 1 g/cm3, the radius-dependent
quantity c̃ZA(R), defined in Eq. (14), is plotted as a function of
R in Fig. 2(b). The dispersion of the Z̃A mode in a water-filled
CNT of radius R = 1 nm is shown in Fig. 2(a).

Elastic constants calculated in this work, and results derived
using the present continuum elasticity approach, are listed and
compared to literature data in Table II.

B. Tubulin-based microtubules

To describe phonon modes in tubulin-based microtubules,
we depend on published experimental data [24] for mi-
crotubules with an average radius R = 12.8 nm and a
wall thickness h = 2.7 nm. The observed density of the
tubule wall material ρ = 1.47 g/cm3 translates to ρ2D =
4.0 × 10−6 kg/m2. The estimated Young’s modulus of the wall
material is E = 0.5 GPa and the flexural beam rigidity of these
microtubules with R = 12.8 nm is Db = 0.9 × 10−23 N m2.
We may use the relationship between Db and D, defined in
Eq. (A15), to map these values onto the elastic 2D wall material
and obtain c11 = Eh = 1.4 N/m and D = 2.71 GPa nm3. In a
rough approximation, tubulin can be considered to be isotropic,
with a Poisson ratio α = 0.25. Further assuming that c11 = c22,
we estimate c66 = (c11 − c12)/2 = c11(1 − α)/2 = 0.5 N/m.
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TABLE II. Elastic behavior of a 2D graphene monolayer. c11,
c22, c66 are 2D elastic stiffness constants defined in Eq. (1). α is
the in-plane Poisson ratio, D is the flexural rigidity, and ρ2D is the
areal mass density. These values can be used directly to calculate
long-wavelength acoustic frequencies ω(k) using the expressions in
Table I and the speed of sound vLA and vT A. Present values are
compared to published data.

Quantity Present result Literature values

c11 = c22 352.6 N/m 342 N/m a

c66 146.5 N/m 144 N/m a

α 0.17 0.19 a

D 0.22 GPa nm3 0.225 GPa nm3 b

RωRBM = √
c11/ρ2D 116 cm−1 nm 116 cm−1 nm c

108 cm−1 nm d

vLA 21.5 km/s 22 km/s a

≈21 km/s e

vT A 14.1 km/s 14 km/s a,b

aReference [20].
bReference [23].
cReference [21].
dReference [22].
eReference [14].

One fundamental difference between tubulin-based micro-
tubules and systems such as CNTs is that the former necessitate
an aqueous environment for their shape and function. Thus, the
correct description of microtubule deformations and vibrations
requires addressing the complete microtubule-liquid system,
which would exceed the scope of this study. We rather resorted
to the expressions derived in the subsection on nanotubes in
a surrounding liquid to at least estimate their Q factor in an
aqueous environment. We used ρ1D = 7 × 10−13 kg/m for a
water-filled microtubule, η = 10−3 Pa s, and f0 = 109 Hz,
which provided us with the value Q ≈ 1.2. In other words,
flexural vibrations in microtubules should be highly damped
in aqueous environment, so their frequency should be very
hard to measure. Consequently, the only available comparison
between our calculations and experimental data should be
made for static measurements.

An elegant way to experimentally determine the effec-
tive beam rigidity of individual tubulin-based microtubules
involves the measurement of buckling caused by applying
an axial buckling force using optical tweezers. Experimental
results for the effective beam rigidity have been obtained
in this way for microtubules that are free of the paclitaxel
stabilizing agent and contain 14 tubulin protofilaments, which
translates to the effective radius R ≈ 9.75 nm. The observed
values range from Db = 3.7 ± 0.8 × 10−24 N m2 [25] to
Db = 7.9 ± 0.7 × 10−24 N m2 [26], in good agreement with
our calculated value Db = 4.2 × 10−24 N m2. Our estimated
value Db = 6.2 × 10−24 N m2 for wider tubules with 16
protofilaments is 49% larger than for the narrower tubules
with 14 protofilaments. The corresponding increase by 49%
has been confirmed in a corresponding experiment [26].

Next, we may still use the oversimplifying assumption that
tubulin microtubules may exist in the vacuum and could be
described by the above-derived continuum values [13]. In this
way, we may compare our results to published theoretical

(c
m

-1
)

(R=12.8nm)~

(R=12.8nm)

k (nm-1)

c Z
A

(c
m

-1
nm

2 )

(a) (b)
cZA (empty MT)

R (nm)

h=2.7 nm

cZA (water-filled MT)~

R h

(R=
12.8nm)

FIG. 3. (a) Frequency of vibrational modes depicted in Fig. 1(a) in
empty and water-filled tubulin-based microtubules. (b) Dependence
of the flexural coefficient cZA(R), defined in Eq. (9), on the radius
R of empty and water-filled tubulin-based microtubules. The tilde
denotes liquid-filled tubules.

results. The calculated phonon dispersion relations ω(k) for
most common microtubules with the radius R = 12.8 nm are
presented in Fig. 3(a). The LA and TA mode frequencies are
independent of the tubule radius. From their slope, we get
the longitudinal speed of sound vLA = dωLA/dk = 0.56 km/s
and the speed of sound with torsional polarization vT A =
dωT A/dk = 0.36 km/s. For the sake of comparison, we
extracted the vLA value based on the elastic cylindrical shells
model with E = 2.0 GPa from Ref. [13]. Extrapolating to
the value E = 0.5 GPa in our set of parameters using the
relationship vLA ∝ √

E, we obtained vLA = 0.59 km/s, in
excellent agreement with our calculated value.

The flexural or bending ZA mode depends on the tubule
radius through the proportionality constant cZA(R), defined
in Eq. (9), which is plotted as a function of R in Fig. 3(b).
The dispersion of the ZA mode in a microtubule of radius
R = 12.8 nm is shown in Fig. 3(a).

Also the RBM frequency depends on the nanotube radius
according to Eq. (10). For R = 12.8 nm, we obtain ωRBM =
0.24 cm−1, as seen in Fig. 3(a).

To describe the increase in the linear density ρ1D of a
microtubule filled with a liquid of density ρl , we have to
account for the finite thickness h of the wall and replace
the radius R by R − h/2 in Eq. (13). Considering water
of density ρl = 1 g/cm3 as the filling medium, we plot the
radius-dependent quantity c̃ZA(R), defined in Eq. (14), as a
function of R in Fig. 3(b). The dispersion of the Z̃A mode in a
water-filled CNT of radius R = 12.8 nm is shown in Fig. 3(a).

Our results in Fig. 3(a) suggest soft vibration in the GHz
range, in agreement with other theoretical estimates [12,13].
As mentioned above, all these vibrations will be highly damped
in an aqueous environment to the low Q factor.

VI. DISCUSSION

Our study has been motivated by the fact that the conven-
tional approach to calculate the frequency spectrum, based on
an atomistic calculation of the force-constant matrix, does not
provide accurate frequencies for long-wavelength soft acoustic
modes in quasi-1D tubular structures. We should note that the
atomistic approach is quite adequate to determine frequencies
of the optical and of short-wavelength acoustic modes. But
for long-wavelength acoustic modes, the excessive demand on
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supercell size and basis convergence often yields imaginary
vibration frequencies as an artifact of insufficient convergence.

As a viable alternative to tedious atomistic calculations
of the force-constant matrix of complex tubular systems, we
propose here a continuum elasticity approach to determine
the frequency of long-wavelength acoustic modes in tubular
structures that does not require the thickness of the wall as an
input. Our approach for quasi-1D structures is based on the suc-
cessful description of corresponding modes in 2D structures
[10]. The continuum elasticity approach introduced in this
study has a significant advantage over the 3D elastic modulus
approach, which has led to inconsistencies in describing the
elastic behavior of thin walls and membranes [27]. Using this
previously unexplored approach, we obtain quantitative results
for systems ranging from stiff CNTs to much wider and softer
protein microtubules.

We found that the elastic behavior of the wall material can
be determined accurately by static calculations of a 2D plate
subjected to small deformation or by elastic measurements.
The validity of predictions based on this approach is limited to
long-wavelength vibrations and large-radius nanotubes, both
of which would require extraordinary computational resources
in atomistic calculations. In particular, the flexural ZA modes
with their ω ∝ k2 momentum dependence are known to be
very hard to reproduce by ab initio calculations near the �

point [8].
For the sake of completeness, we have also derived the

Euler-Lagrange equations of motion required to describe all
long-wavelength acoustic modes and present the detailed
derivation in the appendices.

Of course, the frequency of the ZA modes is expected to
be much softer than that of the LA mode in any nanotube
or nanowire. Since ωZA ∝ k2 whereas ωLA ∝ k, expressions
derived here for the long-wavelength limit would lead to the
unrealistic behavior ωZA > ωLA for large values of k. This
limits the k range, for which our formalism is valid in the
dispersion relations presented in Figs. 2(a) and 3(a). In a
crystalline tubule, k is restricted to typically an even smaller
range given by the size of the 1D Brillouin zone.

For systems with a vanishing Poisson ratio α, the radial
breathing mode (RBM) should be decoupled from the longi-
tudinal acoustic or stretching mode. However, as discussed in
Appendix D, most systems have a nonvanishing value of α.
In that case, the two modes mix and change their character
beyond the wave vector k = 1/R, where ωLA(k) ≈ ωRBM , as
discussed previously [13]. At smaller values of k, coupling
between the LA mode and the RBM modifies the frequency of
these modes by only ≈1% in CNTs.

Our model allows a simple extension from empty to liquid-
filled nanotubes. We find that presence of a filling liquid does
not affect longitudinal acoustic and torsional acoustic modes
to a significant extent, as shown in Appendix C, but softens the
flexural modes. We also expect the pressure wave of the liquid
to couple to the RBM beyond the wave vector k ≈ ωRBM/vp,
where vp is the speed of the propagating pressure wave.

To demonstrate the universality of our approach, we also
considered microtubules formed of the proteins α- and β-
tubulin. These are responsible for maintaining the shape
and elasticity of cells, but are too complex for an atomistic
description to predict vibration spectra. From a computational

point of view, the necessity to include the aqueous environment
in the description of tubulin-based microtubules adds another
layer of complexity to the problem.

Our basic finding that microtubule motion and vibrations
are overdamped in the natural aqueous environment, with
a Q factor of the order of unity, naturally explains the
absence of experimental data reporting observation of motion,
dynamical shape changes, and vibrations in these protein-
based systems. Among static measurements of the elastic
behavior of microtubules, optical tweezers appear to be the
optimum way to handle and deform individual microtubules
in order to determine their effective beam rigidity Db. In
this static scenario, we find our description of the beam
rigidity precise enough to compare with experimental data.
The reported dependence of Db on the cube of the radius
[26] is reflected in our corresponding expression for Db in
Eq. (A15). In the case of tubulin-based microtubules, we find
the leading term in Db to be indeed proportional to R3 and
to be much larger than the second term, which is proportional
to R.

VII. SUMMARY AND CONCLUSIONS

Addressing the shortcoming of conventional atomistic cal-
culations of long-wavelength acoustic frequencies in tubular
structures, which often yield numerical artifacts, we have
developed an alternative computational approach representing
an adaptation of continuum elasticity theory to 2D and 1D
structures. Since 1D tubular structures can be viewed as 2D
plates of finite width rolled up to a cylinder, we have taken ad-
vantage of the correspondence between 1D and 2D structures
to determine their elastic response to strain. In our approach,
computation of long-wavelength acoustic frequencies does
not require the determination and diagonalization of a large,
momentum-dependent dynamical matrix. Instead, the simple
expressions we have derived for the acoustic frequencies
ω(k) use only four elements of a k-independent 2D elastic
matrix, namely c11, c22, c12, and c66, as well as the value
of the flexural rigidity D of the 2D plate constituting the
wall. These five numerical values can easily be obtained
using static calculations for a 2D plate. Even though the
scope of our approach is limited to long-wavelength acoustic
modes, we found that the accuracy of the calculated vibration
frequencies surpasses that of conventional atomistic ab initio
calculations. Starting with a Lagrange function describing
longitudinal, torsional, flexural, and radial deformations of
empty or liquid-filled tubular structures, we have derived
corresponding Euler-Lagrange equations to obtain simple
expressions for the vibration frequencies of the corresponding
modes. We have furthermore shown that longitudinal and
flexural acoustic modes of tubules are well described by those
of an elastic beam resembling a nanowire. Using our simple
expressions, we were able to show that a pressure wave in the
liquid contained in a stiff carbon nanotube has little effect on its
RBM frequency, whereas the effect of a contained liquid on the
RBM frequency in much softer tubulin tubules is significant.
We found that presence of water in the native environment of
tubulin microtubules reduces the Q factor to such a degree that
flexural vibrations can hardly be observed. We also showed
that the coupling between long-wavelength LA modes and the
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RBM can be neglected. We have found general agreement
between our numerical results for biological microtubules and
carbon nanotubes and available experimental data.
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APPENDICES

Material in the appendices provides detailed derivation
of expressions used in the main text and considers specific
limiting cases. In Appendix A, we derive the Lagrange
function for stretching, torsional, and bending modes of tubular
structure. In Appendix B, we derive analytical expressions
for the frequencies of the corresponding vibration modes
using the Euler-Lagrange equations. The effect of a liquid
contained inside a CNT on its RBM frequency is investigated
in Appendix C. The coupling between the longitudinal acoustic
mode and the RBM in a CNT due to its nonvanishing Poisson
ratio is discussed in Appendix D.

APPENDIX A: LAGRANGE FUNCTION
OF A STRAINED NANOTUBE

1. Stretching

Let us consider a nanotube of radius R aligned with the x

axis and its response to tensile strain dux/dx applied uniformly
along the x direction. The strain energy will be the same as
that of a 2D strip of width y = 2πR lying in the xy plane that
is subject to the same condition.

Assuming that the width of the strip is constrained to be
constant, the strain energy per length is given by

Ux = 1

2
c11

(
dux

dx

)2

2πR. (A1)

For a nonzero Poisson ratio α, stretching the strip by dux/dx

will reduce its width by duy/dy = αdux/dx and its radius R,
as shown in Fig. 1(a). Releasing the constrained width will
release the energy Uy = −α2Ux . The total strain energy per
length of a nanotubule or an equivalent 1D nanowire is the
sum U = Ux + Uy and is given by

U = 1

2
c11(1 − α2)

(
dux

dx

)2

2πR

= 1

2
cLA

(
dux

dx

)2

. (A2)

Here, cLA = 2πRc11(1 − α2) is the the longitudinal force
constant of a 1D nanowire equivalent to the tubule, defined
in Eq. (4).

In the harmonic regime, we will consider only small strain
values. Releasing the strain will cause a vibration in the x

direction with the velocity vx = dux/dt . Then, the kinetic

energy density of the strip will be given by

T = 1

2
ρ2D

(
dux

dt

)2

2πR = 1

2
ρ1D

(
dux

dt

)2

, (A3)

where ρ2D is the areal mass density of the equivalent strip that
is related to ρ1D by Eq. (2). The Lagrangian density is then
given by

L
(

dux

dx
,
dux

dt
,x,t

)
= T − U

= 1

2

[
ρ2D

(
dux

dt

)2

− c11(1 − α2)

(
dux

dx

)2]
2πR

= 1

2

[
ρ1D

(
dux

dt

)2

− cLA

(
dux

dx

)2]
. (A4)

2. Torsion

The derivation of the Euler-Lagrange equation for the
torsional motion is very similar to that for the longitudinal
motion. The main difference is that the displacement uφ

is normal to the propagation direction x. To obtain the
corresponding equations, we need to replace ux by uφ and
c11(1 − α2) by c66 in Eqs. (A1)–(A4). The Lagrangian density
is then given by

L
(

duφ

dx
,
duφ

dt
,x,t

)
= T − U

= 1

2

[
ρ2D

(
duφ

dt

)2

− c66

(
duφ

dx

)2]
2πR. (A5)

3. Bending

Bending a nanotube of radius R is equivalent to its
transformation to a segment of a nanotorus of radius Rt .
Initially, we will assume that c11 = 0 and D > 0 in the given
nanotorus segment, so the strain energy would contain only an
out-of-plane component. We first consider a straight nanotube
of radius R formed by rolling up a plate of width 2πR.
The corresponding out-of-plane strain energy per nanotube
segment length is

U = 1

2

D

R2
(2πR) = πD

R
. (A6)

The corresponding expression for the total out-of-plane strain
energy in a nanotorus is [28]

U = 2π2D
R2

t

R
√

(Rt + R)(Rt − R)
. (A7)

Divided by the average perimeter length 2πRt , we obtain the
out-of-plane energy of the torus per nanotube segment length

U = πD
Rt

R
√

(Rt + R)(Rt − R)
. (A8)

Assuming that the torus radius is much larger than the nanotube
radius, Rt � R, we can Taylor expand U in Eq. (A8) and
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neglect higher-order terms in (R/Rt ), which leads to

U = πD

R

[
1 + 1

2

(
R

Rt

)2]
. (A9)

Comparing the out-of-plane strain energy of a bent nanotube in
Eq. (A9) and that of a straight nanotube in Eq. (A6), the change
in out-of-plane strain energy per segment length associated
with bending turns out to be

U = 1

2
πDR

(
1

Rt

)2

. (A10)

During the flexural or bending vibration mode, the local
curvature 1/Rt = d2uz/dx2 changes along the tube, yielding
the local in-plane strain energy per nanotube segment length
of

U = 1

2
πDR

(
d2uz

dx2

)2

. (A11)

Next, we consider the in-plane component of strain, obtained
by assuming c11 > 0 and D = 0 in a given nanotorus segment.
There is nonzero strain in a nanotube deformed to a very
wide torus with Rt � R even if its cross section and radius
R were not to change in this process. The reason is that the
wall of the nanotube undergoes stretching along the outer and
compression along the inner torus perimeter in this process.
This amounts to a total in-plane strain energy [28]

U = π2c11R
3

Rt

(A12)

for the entire torus with an average perimeter of 2πRt in
relation to a straight nanotube of length 2πRt . Thus, the in-
plane strain energy within the torus per segment length is

U = 1

2
πc11R

3

(
1

Rt

)2

. (A13)

Considering local changes in curvature 1/Rt = d2uz/dx2

during the bending vibrations of a nanotube, the local in-plane
strain energy per nanotube segment length becomes

U = 1

2
πc11R

3

(
d2uz

dx2

)2

. (A14)

The strain energy in the deformed nanotube per length is the
sum of the in-plane strain energy in Eq. (A14) and the out-of-
plane strain energy in Eq. (A11), yielding

U = 1

2
(πc11R

3 + πDR)

(
d2uz

dx2

)2

= 1

2
Db

(
d2uz

dx2

)2

, (A15)

where

Db = πc11R
3 + πDR (A16)

is the effective beam rigidity of a corresponding nanowire. The
kinetic energy of a bending nanotube or nanowire segment is
given by

T = 1

2
ρ1D

(
duz

dt

)2

. (A17)

This leads to the Lagrangian density

L
(

d2uz

dx2
,
duz

dt
,x,t

)
= T − U

= 1

2

[
ρ1D

(
duz

dt

)2

− πc11R
3

(
1 + D

c11R2

)(
d2uz

dx2

)2]
.

(A18)

APPENDIX B: DERIVATION OF EULER-LAGRANGE
EQUATIONS OF MOTION FOR DEFORMATIONS OF A

NANOTUBE USING HAMILTON’S PRINCIPLE

1. Stretching

The Euler-Lagrange equation for stretching a tube or a plate
is [10]

d

dt

(
∂L

∂ dux

dt

)
+ d

dx

(
∂L

∂ dux

dx

)
= 0. (B1)

Inserting the Lagrangian of Eq. (A4) in the Euler-Lagrange
Eq. (B1) yields the wave equation for longitudinal vibrations
of the tubule or the equivalent nanowire

2πRρ2D

d2ux

dt2
− 2πRc11(1 − α2)

d2ux

dx2

= ρ1D

d2ux

dt2
− cLA

d2ux

dx2
= 0. (B2)

The nanotube radius R drops out and we obtain

ρ2D

d2ux

dt2
− c11(1 − α2)

d2ux

dx2
= ρ1D

d2ux

dt2
− cLA

d2ux

dx2
= 0.

(B3)

This wave equation can be solved using the ansatz

ux = ux,0e
i(kx−ωt) (B4)

to yield

ρ2Dω2 = c11(1 − α2)k2 (B5)

for a tubular structure or

ρ1Dω2 = cLAk2 (B6)

for an equivalent 1D nanowire. This finally translates to the
desired form

ωLA =
√

cLA

ρ1D

k =
√

c11(1 − α2)

ρ2D

k, (B7)

which is identical to Eq. (7).

2. Torsion

The LagrangianL(duφ/dx,duφ/dt,x,t) in Eq. (A5), which
describes the torsion of a tubule, has a similar form as the
Lagrangian in Eq. (A4). To obtain the equations for torsional
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motion from those for stretching motion, we need to replace
ux by uφ and c11(1 − α2) by c66 in Eqs. (B1)–(B7). Thus, the
frequency of the torsional acoustic mode becomes

ω =
√

c66

ρ2D

k, (B8)

which is identical to Eq. (8). The torsional frequency is the
same as frequency of the shear motion in the equivalent thin
plate [10].

3. Bending

The Euler-Lagrange equation for bending a tube or a plate
is given by [10]

d

dt

(
∂L
∂

duz

dt

)
− d2

dx2

(
∂L

∂
d2uz

dx2

)
= 0. (B9)

Inserting the Lagrangian of Eq. (A18) for flexural motion in the
Euler-Lagrange Eq. (B9) yields the wave equation for flexual
vibrations

ρ1D

d2uz

dt2
+ πc11R

3

(
1 + D

c11R2

)
d4uz

dx4

= ρ1D

d2uz

dt2
+ Db

d4uz

dx4
= 0. (B10)

This wave equation can be solved using the ansatz

uz = uz,0e
i(kx−ωt) (B11)

to yield

ρ1Dω2 = πc11R
3

(
1 + D

c11R2

)
k4 = Dbk

4. (B12)

This finally translates to the desired form

ω =
√

πc11R3

ρ1D

(
1 + D

c11R2

)
k2 =

√
Db

ρ1D

k2, (B13)

which is identical to Eq. (9).
For a liquid-filled nanotube, we only need to replace ρ1D

by ρ̃1D in Eq. (B13) to get

ω =
√

πc11R3

ρ̃1D

(
1 + D

c11R2

)
k2 =

√
Db

ρ̃1D

k2, (B14)

which is identical to Eq. (14).

APPENDIX C: COUPLING BETWEEN A TRAVELING
PRESSURE WAVE AND THE RBM IN A LIQUID-FILLED

CARBON NANOTUBE

Next we consider a long-wavelength displacement wave
ux = ux,0 exp[i(kx − ωt)] of small frequency ω and wave
vector k traveling down the liquid column filling a carbon
nanotube. We assume the liquid to be compressible but
viscosity-free. Thus, the traveling displacement wave will
result in a pressure wave p = p0 exp[i(kx − ωt)] that causes

radial displacements r = r0 exp[i(kx − ωt)] in the CNT wall.
These radial displacements couple the pressure wave in the
liquid to the RBM, but not the longitudinal and torsional modes
of the CNT.

At small frequencies ω, there will be little radial variation
in the pressure. The local compressive strain in the liquid will
thus be

−δV

V
= −

(
∂ux

∂x
+ 2r

R

)
(C1)

and the pressure becomes

p = −B
δV

V
= −B

(
∂ux

∂x
+ 2r

R

)
. (C2)

Here, B is the bulk modulus of the filling liquid, which we
assume is water with B = 2.2 × 109 Pa.

The local acceleration of water is given by

ρl

∂2ux

∂t2
= −∂p

∂x
(C3)

and the radial acceleration of the CNT is given by

ρ2D

∂2r

∂t2
= p − c11

R2
r. (C4)

Inserting harmonic solutions for p, ux , and r into Eqs. (C2)–
(C4), we obtain⎛

⎝ 1 Bik 2B/R

−ik ρlω
2 0

1 0 −(c11/R
2 − ρ2Dω2)

⎞
⎠

⎛
⎝ p0

ux,0

r0

⎞
⎠ = 0 (C5)

with the characteristic equation(
c11

R2
− ρ2Dω2

)
(k2B − ρlω

2) − ρlω
2 2B

R
= 0. (C6)

This can be rewritten as(
ω2

0 − ω2
)
(k2v2 − ω2) − ω2γ 2 = 0, (C7)

where ω2
0 = c11/(ρ2DR2) and γ 2 = 2B/(ρ2DR). For a CNT

of radius R = 1 nm, we obtain ω2
0 = 474 ps−2 and γ 2 =

5.92 ps−2.
Solving Eq. (C7) leads to the dispersion relation ω(k),

which is presented in Fig. 4(a). In the following, we focus on
the lowest lying branch of the dispersion relation describing a
long-wavelength, low-frequency pressure wave traveling down
the liquid column. In this case, we can neglect ω2 in the first
factor of Eq. (C7) and obtain

ω = vk√
1 + γ 2

ω2
0

. (C8)

Considering the filling liquid to be water with the speed of
sound v = √

B/ρl ≈ 1483 m/s, the velocity of the propagat-
ing pressure wave inside the CNT becomes

ω

k
= v

1√
1 + γ 2

ω2
0

= 1474 m/s. (C9)

This value is only slightly reduced from that of bulk water
because of the relative rigidity of the CNT.
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FIG. 4. Nature and coupling of vibration modes ω(k) of a carbon
nanotube that may be filled with water. (a) Coupling between the
dispersionless RBM of a CNT, shown by the black line, and the
pressure wave of water enclosed in the CNT, shown by the green
dotted line. (b) Coupling between the RBM of a CNT, shown by the
black line, and the longitudinal acoustic mode of the CNT, shown by
the green dotted line. Results are presented for a CNT with a radius
of 1 nm.

In the corresponding low-wave-number range, the fre-
quency of the RBM is changed to

ω̃RBM = ωRBM

√
1 + γ 2

ω2
RBM

. (C10)

For a CNT with radius R = 1 nm, (1 + γ 2/ω2
RBM )1/2 =

(1 + 5.92/474)1/2 = 1.006, yielding only a 0.6% increase in
frequency.

The situation is quite different for tubulin microtubules.
Assuming a radius of R = 12.8 nm, we find ωRBM =
0.24 cm−1 corresponding to ω2

RBM = 0.00203 ps−2. In
that case, (1 + γ 2/ω2

RBM )1/2 = (1 + 0.0859/0.00203)1/2 =
6.6. In other words, filling tubulin microtubules with water
will increase their RBM frequency by a factor of 6.6.

As seen in the full solution of Eq. (C7) in Fig. 4(a), at
k ≈ 15 nm−1, there is level repulsion and interchange in
character between the two dispersion curves. At very much
higher frequencies there will be radial modes in the water
column that will couple to the RBM of the CNT. These lie
outside the scope of the present treatment.

APPENDIX D: COUPLING BETWEEN THE LA MODE
AND THE RBM IN CARBON NANOTUBES

Consider a longitudinal wave traveling along a CNT
containing no liquid. The CNT of radius R is aligned along the
x direction and can be thought of as a rolled up plate in the xy

plane with a width of 2πR along the y direction. Where the
CNT is being locally stretched, it will narrow down and where
it is compressed, it will fatten due to the nonzero value of c12

reflected in the Poisson ratio. For longitudinal displacement
ux and radial displacement r , the strains will be ε11 = ∂ux/∂x

and ε22 = r/R.
The strain energy density is then

U = 1

2

(
c11ε

2
11 + c11ε

2
22 + 2c12ε22ε11

)

= 1

2
c11

[(
∂ux

∂x

)2

+
(

r

R

)2]
+ c12

∂ux

∂x

r

R
(D1)

and the kinetic energy density is

T = 1

2
ρ2D

[(
∂ux

∂t

)2

+
(

∂r

∂t

)2]
. (D2)

There are two Euler-Langrange equations for the radial and
the axial motion,

d

dt

(
∂L

∂
(

dr
dt

))
− ∂L

∂r
= 0 (D3)

and

d

dt

(
∂L

∂
(

dux

dt

))
+ ∂

∂x

(
∂L

∂
(

dux

dx

))
= 0. (D4)

With the LagrangianL = T − U given by Eqs. (D1) and (D2),
the Euler-Lagrange equations translate to partial differential
equations

ρ2D

∂2r

∂t2
+ c11

r

R2
+ c12

R

∂ux

∂x
= 0 (D5)

and

ρ2D

∂2ux

∂t2
− c11

∂2ux

∂x2
− c12

R

∂r

∂x
= 0. (D6)

Assuming harmonic solutions ux = ux,0 exp[i(kx − ωt)] and
r = r0 exp[i(kx − ωt)], we get(

−ρ2Dω2 + c11/R
2 ikc12/R

−ikc12/R −ρ2Dω2 + c11k
2)

)(
r0

ux,0

)
= 0

(D7)

with the characteristic equation(
c11

ρ2DR2
− ω2

)(
c11

ρ2D

k2 − ω2

)
− c2

12k
2

ρ2D
2R2

= 0. (D8)

Solving Eq. (D8) leads to the dispersion relations ω(k)
that are shown in Fig. 4(b) for a CNT with radius R = 1
nm, with the values c11/(ρ2DR2) = 474 ps−2, c11/(ρ2D) =
474 ps−2 nm2, and c2

12/(ρ2
2DR2) = 6434 nm2 ps−4. Our results

in Fig. 4(b) closely resemble those of Ref. [13], obtained
using a more complex formalism describing orthotropic elastic
cylindrical shells using somewhat different input parameters.
Were c12 to be zero, then the uncoupled solutions would be the
dispersionless RBM of frequency

ω = 1

R

√
c11

ρ2D

, (D9)

shown by the black solid line in Fig. 4(b), and the pure
longitudinal mode of velocity

v = ω

k
=

√
c11

ρ2D

, (D10)

shown by the green dotted line in Fig. 4(b).
The coupling term induces level repulsion between the

ω−(k) and ω+(k) branches, with strong mode hybridization
occurring near k ≈ 1 nm−1. It is of interest to examine the
limiting forms of the two solutions for k → 0 and k → ∞.
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For k → 0, the larger solution ω+(k) approaches a constant
value ω0

+. From Eq. (D8) we obtain

ω0
+ = 1

R

√
c11

ρ2D

+ O(k2). (D11)

The lower solution ω−(k) approaches the value ω− = vk,
where v is the velocity of longitudinal mode, modified by
its coupling to the RBM. Inserting this in Eq. (D8) and taking
the limit k → 0, we obtain

v = ω

k
=

√
c11(1 − α2)

ρ2D

, (D12)

where α = c12/c11 is the Poisson ratio. The numerical value of
the velocity obtained using this expression, v = 21.45 nm/ps,
is slightly smaller than the velocity of the longitudinal mode

v = ω

k
=

√
c11

ρ2D

, (D13)

which turns out to be v = 21.77 nm/ps. The 1% reduction
by the factor of

√
1 − α2 is caused by the coupling of the

longitudinal mode to the RBM.
In the opposite limit k → ∞, the lower solution ω−(k)

approaches a value, which is a little below the uncoupled RBM

frequency [10] of a nanotube with R = 1 nm,

ω = 1

R

√
c11

ρ2D

= 117 cm−1. (D14)

We can obtain the coupled RBM frequency ω∞
− from Eq. (D8)

by neglecting its value in comparison with c11k
2/ρ2D . This

yields

ω = 1

R

√
c11(1 − α2)

ρ2D

= 115 cm−1. (D15)

The 1% reduction of the RBM frequency in the k → ∞ limit
by the factor of

√
1 − α2 is again caused by the coupling of

the longitudinal mode to the RBM.
For k → ∞, the upper solution approaches the value

ω+ = vk, where v is the velocity of the uncoupled LA
mode. Neglecting c11/(ρ2DR) in comparison with v2k2 and
neglecting k2 terms in comparison with k4 terms in Eq. (D8),
we arrive at

v =
√

c11/ρ2D (D16)

with no corrections due to the coupling to the RBM. This
was to be expected, since for kR � 1, this nanotube mode
corresponds to the LA mode in a graphene sheet.
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