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Using continuum elasticity theory, we describe the elastic behavior of helical coils with an asymmetric
double-helix structure and identify conditions under which they become very rigid. Theoretical insight
gained for macrostructures including a stretched telephone cord and an unsupported helical staircase is
universal and of interest for the elastic behavior of helical structures on the micrometer and nanometer
scale.
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I. INTRODUCTION

Helical coil structures, ranging from a stretched tele-
phone cord in Fig. 1(a) and an unsupported spiral staircase
in Fig. 1(b) on the macroscale to DNA and proteins on the
microscale abound in nature. Since their elastic behavior
is governed by the same laws of physics independent of
scale, insight obtained on the macroscale will benefit the
understanding of helical microstructures and nanostruc-
tures. An intriguing example of unusual high rigidity on
the macroscale, which has remained unexplained to date, is
the unsupported all-wooden spiral staircase in the Loretto
Chapel [1] in Santa Fe, New Mexico, constructed around
1878 and shown in Fig. 1(b). In the following, we explore
the elastic behavior of this structure using continuum
elasticity theory in order to identify the reason for its
rigidity [2–4]. Since continuum elasticity theory applies
from nanometer-sized fullerenes and nanotubes [5–7] to the
macroscale, we expect our approach to be useful to explore
the rigidity of helical structures on the micrometer and
nanometer scale.
The use of continuum elasticity theory rather than the

case-specific finite-element method [3] in this case is
motivated by our objective to identify the universal origin
of the high rigidity of the Loretto spiral staircase and related
helical coils with an asymmetric double-helix structure.
Theoretical insight gained for macrostructures including a
stretched telephone cord and an unsupported helical stair-
case is universal and of interest for the elastic behavior of
helical structures on the micrometer and nanometer scale.

II. ELASTIC BEHAVIOR OF A HELICAL COIL

From a physics viewpoint, the spiral staircase of
Fig. 1(b) is a compression coil or a helical spring with a
rather high pitch. It can be characterized as an asymmetric
double-helix structure consisting of an inner stringer coil of
radius Ri and an outer stringer coil of radius Ro, and spans

two turns in total. The two stringer coils are connected by
rigid steps of width Ro − Ri. The staircase can be equiv-
alently described as a helicoid, or a “filled-in” helix, with
finite nonzero inner and outer radii.
There is an extensive literature on the properties of

helical springs, which dates back to Love’s treatise [2], as
well as the more recent Refs. [3,4], and literature cited
therein. Yet the compound helical structure of the Loretto
staircase and related helical coils appears to have escaped
attention in publications so far. The rigidity of the con-
necting steps provides the spiral staircase with a remarkable
degree of stiffness, as we show below. We propose that this
property is shared by similar helical structures independent
of their scale.
Any coil of radius R and total height H, such as the

inner and the outer stringer of the staircase, lies within
a cylindrical wall of the same height, which can be
unwrapped onto a triangle, as shown in Fig. 1(c). Let us
first consider the case of incompressible inner and outer
stringers of height H that are separated by the constant
distance Ro − Ri, which defines the step width.
According to Fig. 1(c), the equilibrium length Li of the

inner stringer coil with two turns is related to its equilib-
rium radius Ri and its equilibrium height H by

L2
i ¼ H2 þ ð4πÞ2R2

i : ð1Þ

The equivalent relation applies, of course, to the outer
stringer of radius Ro.
We first consider an incompressible stringer of constant

length Li, which is stretched axially by δH, causing the
radius Ri to change by δRi. Then,

L2
i ¼ ðH þ δHÞ2 þ 16π2ðRi þ δRiÞ2: ð2Þ

Subtracting Eq. (1) from Eq. (2) and ignoring δH2 and δR2
i

terms in the limit of small deformations, we obtain

2HδH þ 16π2ð2RiδRiÞ ¼ 0; ð3Þ*tomanek@pa.msu.edu
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and, consequently,

δRi ¼ −
H

16π2Ri
δH: ð4Þ

Considering the outer helical stringer to behave independ-
ently for the moment, we expect the counterpart of Eq. (4)

δRo ¼ −
H

16π2Ro
δH ð5Þ

to describe the outer stringer. The step width should then
change by

δðRo − RiÞ ¼ δRo − δRi ¼ −
HδH
16π2

�
1

Ro
−

1

Ri

�
: ð6Þ

The only way to keep the step width constant, correspond-
ing to δðRo − RiÞ ¼ 0, is to have either zero step width
Ri ¼ Ro, reducing the double helix to a single helix, or to
suppress any change in height with δH ¼ 0. Even though
each individual stringer coil can change its height H while
keeping its length L constant, the assumed rigid connection
between the inner and outer stringers makes the staircase
completely rigid.
Next, we relax the constraint that each stringer should

maintain its length when the staircase changes its height H.
Nevertheless, we will still maintain the assumption of a
fixed step width

Ro − Ri ¼ const ð7Þ

that translates to δRi ¼ δRo ¼ δR. The compressible inner
stringer helix will still be characterized by its equilibrium
length Li and equilibrium radius Ri. Its deformation caused
by changes of its axial height by δH is then described by

ðLi þ δLiÞ2 ¼ ðH þ δHÞ2 þ ð4πÞ2ðRi þ δRiÞ2: ð8Þ

Ignoring δL2
i , δH

2, and δR2
i terms in the limit of small

deformations, we obtain

L2
i þ 2LiδLi ¼ H2 þ 2HδH þ 16π2ðR2

i þ 2RiδRiÞ: ð9Þ

Subtracting Eq. (1) from Eq. (9), we obtain

2LiδLi ¼ 2HδH þ 16π22RiδRi: ð10Þ

With the assumption δRi ¼ δRo ¼ δR, we can rewrite
Eq. (10) and its counterpart for the outer stringer as

LiδLi ¼ HδH þ 16π2RiδR;

LoδLo ¼ HδH þ 16π2RoδR: ð11Þ

Combining all terms containing δR on one side, we can
eliminate δR by dividing the two equations. This leads to

LiδLi −HδH
LoδLo −HδH

¼ Ri

Ro
ð12Þ

and, by rearranging terms, to

Li

Ri
δLi −

H
Ri

δH ¼ Lo

Ro
δLo −

H
Ro

δH ¼ κ; ð13Þ

where κ is a variable to be determined by minimizing the
strain energy U of the deformed stringers. U is given by

U ¼ 1

2
C

�
δLi

Li

�
2

Li þ
1

2
C

�
δLo

Lo

�
2

Lo

¼ 1

2
C

�
δL2

i

Li
þ δL2

o

Lo

�
; ð14Þ

where C is the force constant describing the elastic
response of the stringers to stretching. For a macroscopic
stringer with the Young’s modulus E and the cross-
sectional area A, C ¼ EA. From Eq. (13) we get

δLi ¼
HδH þ κRi

Li
ð15Þ

for the inner stringer. Similarly, we get

δLo ¼
HδH þ κRo

Lo
ð16Þ

for the outer stringer and can now rewrite the strain energy as

(c)

Ro

H

4 R

L =
[H 2+(4 R)2]

1
2

H

outer 
stringer

(a)

Ri

(b)

inner 
stringer

axis

FIG. 1. (a) Photograph of a coiled telephone cord with the
same topology as an unsupported spiral staircase. (b) Retouched
photograph of the unsupported spiral staircase at the Loretto
Chapel as constructed. (c) Trace of the helical inner or outer
stringers of the staircase on the surface of a cylinder, which can be
unwrapped into a rectangle.
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U ¼ 1

2
C

�ðHδH þ κRiÞ2
L3
i

þ ðHδH þ κRoÞ2
L3
o

�
: ð17Þ

The optimum value of κ is obtained from requiring
∂U=∂κ ¼ 0. This leads to

ðHδH þ κRiÞRi

L3
i

þ ðHδH þ κRoÞRo

L3
o

¼ 0; ð18Þ

which can be rewritten as

ðHδH þ κRiÞRiL3
o þ ðHδH þ κRoÞRoL3

i ¼ 0: ð19Þ

We can regroup the terms to get

HδHðRiL3
o þ RoL3

i Þ þ κðR2
i L

3
o þ R2

oL3
i Þ ¼ 0; ð20Þ

which yields expressions for the optimum values of κ, δLi,
and δLo. We get

κ ¼ −HδH
RiL3

o þ RoL3
i

R2
i L

3
o þ R2

oL3
i
; ð21Þ

δLi ¼
HδH
Li

�
1 − Ri

�
RiL3

o þ RoL3
i

R2
i L

3
o þ R2

oL3
i

��

¼ HδH

�
L2
i Ro

R2
i L

3
o þ R2

oL3
i

�
ðRo − RiÞ; ð22Þ

and

δLo ¼
HδH
Lo

�
1 − Ro

�
RiL3

o þ RoL3
i

R2
i L

3
o þ R2

oL3
i

��

¼ HδH

�
L2
oRi

R2
i L

3
o þ R2

oL3
i

�
ðRi − RoÞ: ð23Þ

To interpret this result, let us first consider the inner and outer
stringers to be independent first, and only then consider the
effect of a constant step width separating them. In response
to δH > 0, the inner stringer prefers to reduce its radius
significantly, but this reduction is limited by the constant-
step-width constraint. Thus, the length of the inner stringer is
increased and it is in tension. For this to occur, the stairs must
have been pulling the inner stringer outwards, and so the
steps are subject to tensile stress. In response to increasing
its height, also the outer stringer prefers to reduce its radius.
But the constant-step-width constraint reduces its radius
even more, so that the outer stringer ends up in compression.
To accomplish this, the steps must be pulling it inward and
again should be subjected to tensile stress. In response to
δH < 0, the strains in the inner and the outer stringers will
change sign and the steps will be under compressive stress.

The total strain energy amounts to

U ¼ 1

2
C
H2δH2ðRo − RiÞ2
R2
i L

3
o þ R2

oL3
i

¼ 1

2
kδH2; ð24Þ

where k is the spring constant of the entire double-helix
structure, given by

k ¼ C
H2ðRo − RiÞ2
R2
i L

3
o þ R2

oL3
i
: ð25Þ

We note that in a single-stringer case, characterized by
Ro − Ri ¼ 0, the axial spring constant k would vanish in
our model.
For the initially mentioned spiral staircase in the Loretto

chapel, Ri ¼ 0.26 m, Ro ¼ 1.00 m, and H ¼ 6.10 m.
From Eq. (1), we get Li ¼ 6.92 m and Lo ¼ 13.97 m.
For the sake of a fair comparison to a straight staircase

with a slope given by tanðφÞ, as seen in Fig. 1(c), we do not
use the pitch, but rather the local slope tanðφiÞ ¼ H=ð4πRiÞ
of the inner stringer to characterize how steep the staircase
is. The Loretto staircase is rather steep near the inner
stringer with tanðφiÞ ¼ 1.9, corresponding to φi × ≈ 61°.
The stringers of the Loretto staircase have a rectangular

cross section of 6.4 cm × 19.0 cm, and so we have for the
cross-section area A ¼ 121 cm2. Considering the elastic
modulus E ≈ 1010 N=m2 for wood along the grains, we
obtainC ¼ EA ¼ 1.2 × 108 J=m. Thus, the spring constant
of the double-helix structure describing the staircase could
be as high as k ¼ 4.8 × 106 N=m.
Now, consider the staircase suspended at the top and free

to deform in the axial direction. The largest deformation
will occur when a load is applied on the lowest step. A
person of 100 kg in that location would apply net force
F ¼ 981 N to the staircase, causing an axial elongation of
δH ¼ F=k ¼ 0.2 mm, which is very small.
In reality, the staircase is anchored both at the top and the

bottom, and its total height is constrained. The weight of a
person climbing up the stairs is supported by the fraction x
of the staircase below, which is under compression, and the
fraction (1 − x) of the staircase above, which is under
tension. The local axial deflection δh along the staircase is
then given by

δhðxÞ ¼ F
k
xð1 − xÞ: ð26Þ

The largest deflection occurs in the midpoint of the stair-
case, with xð1 − xÞ ¼ 1=4. The local vertical deflection
caused by a person of 100 kg standing at this point should
be only δh ≈ 0.05 mm. As expected intuitively, there is no
deflection for a person standing either at the top or at the
bottom.
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III. BENDING DEFORMATION
OF A HELICAL COIL

Structurally, the telephone cord in Fig. 1(a), the unsup-
ported helical staircase in Fig. 1(b), and a rubber hose share
one important property: all elastic material is on the surface
of a hollow cylinder, forming a tube. In a further degree of
simplification, we may ignore the interior structure of this
elastic tube and describe its stretching, twisting, or bending
deformations using continuum elasticity theory [7]. So far,
we have considered stretching as the dominant response to
tensile stress. When a compressive load F is applied to the
helical coil, there will always be a reduction in the heightH
proportional to F=H due to compression. But there will
only be bending, which is synonymous with buckling, if
FH2 exceeds a critical value [8,9]. Our task will be to
identify this critical value.
This finding agrees with published continuum elasticity

results for long-wavelength acoustic phonon modes in
tubular structures [7], which suggest a fundamentally
different dispersion relation ωZA ∝ k2 for bending modes,
in stark contrast to ωLA;TA ∝ k for stretching and torsion.
Since the vibration frequency is proportional to the defor-
mation energy, it makes sense that bending is preferred to
compression at small values of k corresponding to long
wavelengths and large H values, and vice versa for short
wavelengths and small H values.
As expanded upon further in the Appendix, we consider

an elastic tube of radius R and heightH that could be either
compressed or bent by the displacement amplitude A. We
will consider the tube material to be described by the 2D
elastic constant c11 and the Poisson ratio α. Then, accord-
ing to Eq. (A4) in the Appendix, we obtain for the total
axial compression energy

Uc;tot ¼ πc11ð1 − α2ÞRA2
1

H
: ð27Þ

Comparing this expression to Eq. (24), we can express
c11 by

c11 ¼ k
H

2πRð1 − α2Þ ; ð28Þ

where k is given by Eq. (25) and, for the sake of simplicity,
we use R ¼ Ro.
According to Eq. (1), assuming that load-induced

changes of the stringer length L can be neglected, any
change in heightH would cause a reduction of the radius R
and the circumference 2πR. We obtain

δð2πRÞ
2πR

¼ −
H2

ð4πÞ2R2

δH
H

¼ −
ðH=RÞ2
16π2

δH
H

¼ −α
δH
H

;

ð29Þ

thus defining the Poisson ratio

α ¼ ðH=RÞ2
16π2

: ð30Þ

According to Eq. (A9) of the Appendix, the total bending
energy is given by

Ub;tot ¼ 4π5c11A2

�
R
H

�
3

¼ 4π4Dt
A2

H3
; ð31Þ

where Dt ¼ πc11R3 is the flexural rigidity of the tube.
The reduction in the height of the tube due to bending is
given by

δH ¼
Z

H

0

dx

�
1þ

�
duz
dx

�
2
�
1=2

−H ≈
2π2A2

H
ð32Þ

to lowest order in A, and the work done by the external
load is thus

FδH ¼ 2π2FA2

H
: ð33Þ

The critical condition for bending to occur is that this
work should exceed the total bending energy

FδH > Ub;tot ð34Þ

and translates to

FH2 > 2π2Dt: ð35Þ

We can see from the parameters of the Loretto staircase
that it is very stable against buckling. From the above
equations, we obtain 2π2Dt¼2π3c11R3¼π2R2Hk=ð1−α2Þ,
which simplifies to 2π2Dt ¼ π2R2HEA=½Hð1 − α2Þ� ¼
π2R2EA=ð1 − α2Þ. Since R ≈ Ro ¼ 1 m, α ¼ 0.24, and
EA ¼ 1.2 × 108 J=m, we get 2π2Dt ¼ 1.25 × 109 Jm.
Assuming a compressive load F ¼ 103 N, this quantity
is vastly greater than FH2 ¼ 103 × 6.12 ¼ 3.7 × 104 Jm.
The load would have to be increased by more than 4 orders
of magnitude, or the height increased by more than 2 orders
of magnitude, to cause buckling.

IV. ELASTIC BEHAVIOR OF SIMILAR
HELICAL STRUCTURES IN NATURE

Every helical structure, from the coiled telephone cord
in Fig. 1(a) to the spiral staircase in Fig. 1(b) and to
submicron-sized α helices found in proteins, can be
mapped topologically onto a helical coil. The helix we
describe here, which turns out very rigid, consists of two
helical coils with different radii, separated by a constant
distance. This particular design could clearly be utilized to
form man-made nanostructures that will be very rigid.
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It is tempting to explore whether any existing structures
in nature may have a similar look and behave in a similar
manner. Among the biomolecules that immediately come
to mind is the double-stranded DNA that, coincidentally,
is also left-handed. DNA, however, does not fulfill the
constant-step-width assumption, since the bases from the
two strands are noncovalently bound in pairs, forming a
“breathing” rather than a rigid unit. Another system known
for its toughness, collagen [10], has only some interstrand
covalent bonding, but not at every step. Moreover, its triple-
helix structure differs from the model we discuss. After a
long search, we believe there are no real counterparts in
nature of the structure we describe, at least not among
biomolecules.

V. DISCUSSION

Our main objective was to elucidate the origin of the
previously unexplained high rigidity of the unsupported
spiral Loretto staircase by developing a suitable formalism.
Our numerical results should be taken as rough estimates.
We expect the local axial deflections δh of this staircase
caused by load to be significantly larger than the estimated
values presented above. The estimated value of the effective
spring constant of the staircase helix is likely to be reduced
significantly by defects and human-made joints in this all-
wooden structure. Further reduction would come from
considering other deformation modes including lateral
compression or stretching of the wooden steps and, to
some degree, bending. Elastic response to shear stress in
the stringers should significantly contribute to the spring
constant, especially in low-pitch spirals, with the coiled
telephone cord as an intuitive example. Even though the
spiral staircase of Fig. 1(b) is a high-pitch spiral, allowing
for shear deformations in the stringers should further
reduce its effective force constant. Even if all of these
factors combined should decrease the force constant by 1–2
orders of magnitude, we may still expect a maximum local
axial deflection δh of not more than 1–2 cm in case that
each of the 33 steps were loaded by the weight of a person.
As expanded above, since the height is significantly larger
than the radius, bending should not play a significant role as
a possible response to the applied load. We also note that at
a later stage, the staircase had been augmented by a railing,
shown in Fig. 2(a) in the Appendix. This railing does not
affect the elastic response of the staircase under load.
As mentioned above, we have not found any asymmetric

double-helix structure in nature that is rigid and does not
stretch much. Should such a structure exist, its stiffness
should benefit from a constant separation between the
helical coils.

VI. SUMMARY AND CONCLUSIONS

In summary, we use the continuum elasticity theory to
describe the elastic behavior of helical coils with an

asymmetric double-helix structure and identify conditions,
under which they become very rigid. Theoretical insight
gained for macrostructures including a stretched telephone
cord and an unsupported helical staircase is universal and of
interest for the elastic behavior of helical structures on the
micrometer and nanometer scale.
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APPENDIX: ADDITIONAL EXPRESSIONS FOR
SPECIFIC DEFORMATIONS AND ADDITIONAL

GRAPHIC MATERIAL

1. Deformation energy due to compression
and bending

As introduced in the main text, any helical structure may
be mapped onto an elastic tube of radius R and height H
that could be either compressed axially or bent. We will
consider the tube aligned along the x direction and the
tube material to be described by the 2D elastic constant [7]
c11 and the Poisson ratio α. We will consider the local
distortions to be described by

ux ¼ ð−AÞ x
H

ðA1Þ

in the case of axial compression, and

uz ¼ A

�
sin

�
2π

x
H

−
π

2

�
þ 1

�
ðA2Þ

in the case of bending, where A denotes the amplitude of
the distortion.
According to Eq. (A2) of Ref. [7], the compression

energy per length is given by

Uc ¼
1

2
2πRc11ð1 − α2Þ

�
dux
dx

�
2

¼ πc11ð1 − α2ÞR
�
A
H

�
2

: ðA3Þ

The total compression energy of the tube of height H is
then
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Uc;tot ¼ UcH ¼ πc11ð1 − α2ÞRA2
1

H
: ðA4Þ

According to Eq. (A15) of Ref. [7], the bending energy per
length is given by

Ub ¼
1

2
ðπc11R3 þ πDRÞ

�
d2uz
dx2

�
2

: ðA5Þ

Since the flexural rigidityD of the wall “material” vanishes
due to the separation between adjacent helix strands, we
obtain

Ub ¼
1

2
πc11R3

�
d2uz
dx2

�
2

: ðA6Þ

Using the expression in Eq. (A2) for the bending defor-
mation, we obtain

�
d2uz
dx2

�
2

¼ A2

�
2π

H

�
4

sin2
�
2π

x
H

−
π

2

�
; ðA7Þ

which leads to

Ub ¼
1

2
πc11R3A2

�
2π

H

�
4

sin2
�
2π

x
H

−
π

2

�
: ðA8Þ

The total bending energy is obtained by integrating Ub in
Eq. (A8) along the entire heightH of the bent tube, yielding

Ub;tot ¼ 4π5c11A2

�
R
H

�
3

: ðA9Þ

Finally, assuming the same distortion amplitude A for
bending and compression, we can determine the ratio of
the compression and the bending energy

Uc;tot

Ub;tot
¼ 1 − α2

4π4

�
H
R

�
2

ðA10Þ

that is independent of the amplitude A and the elastic
constant c11. We see that for H ≫ R, Uc;tot ≫ Ub;tot,
indicating that bending is energetically more affordable
and thus dominates. The opposite situation occurs for
H ≪ R, when axial compression dominates.

2. Photographs of the Loretto staircase

Retouched photographs of the spiral staircase in the
Loretto Chapel, Santa Fe, New Mexico, are presented
in Fig. 2.
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FIG. 2. Retouched photographs, with the background digitally
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New Mexico. (a) Current view of the staircase including the
railing, which had been added long after construction. (b) Likely
view of the staircase as constructed, with no railing.
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