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Minimum model for the electronic structure of twisted bilayer graphene and related structures
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We introduce a minimum tight-binding model with only three parameters extracted from graphene and untwisted
bilayer graphene. This model reproduces quantitatively the electronic structure of not only these two systems
and bulk graphite near the Fermi level, but also that of twisted bilayer graphene including the value of the first
magic angle, at which bands at EF flatten without overlap and two gaps open, one above and one below EF . Our
approach also predicts the second and third magic angle. The Hamiltonian is sufficiently transparent and flexible
to be adopted to other twisted layered systems.
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The electronic structure of graphite has been described
quantitatively as early as 1947 by Wallace [1] and found to
be dominated by p⊥ orbitals [2] near the Fermi level EF .
It is amazing how this system continues providing surprises
in the behavior of charge carriers near EF . In monolayer
graphene (MLG), described quantitatively by a one-parameter
Hamiltonian [3], backscattering of the massless fermions near
the Dirac point K in the corner of the hexagonal Brillouin
zone (BZ) is suppressed due to the Klein paradox. In bilayer
graphene (BLG) with the Bernal AB layer stacking, the
interlayer interaction turns the linear band dispersion at K to a
parabola and massless fermions in MLG to massive fermions
in BLG and graphite. Most recently, correlated insulating [4]
and unconventional superconducting [5] behavior have been
reported in magic-angle twisted bilayer graphene (TBLG). A
theoretical description of TBLG turns out to be challenging,
since unit cells in the Moiré pattern of the bilayer become in-
finitely large for the general case of incommensurate structures.
An elegant solution to this problem has been provided, treating
the interlayer interaction in a continuum model and handling
the interlayer matrix elements in reciprocal space [6–8]. Even
though band flattening at EF and gap opening near EF have
been predicted theoretically using many approaches [7–16],
none has succeeded so far to reproduce the observed value
of the (first) magic angle θm,1 = 1.1◦ accompanied by a band
flattening without band overlap at EF , opening of band gaps
both below and above the flat bands [4,5], and a sharp resistance
increase at the charge neutrality point.

Here we construct a minimum tight-binding Hamiltonian
with only three parameters extracted from MLG and untwisted
BLG. This Hamiltonian reproduces quantitatively the elec-
tronic structure of not only these two systems and bulk graphite
near EF , but also that of TBLG including the values of the
magic angles θm,1, θm,2, and θm,3. At θm,1, bands at EF flatten
without overlap, and two gaps open, one above and one below
EF . The Hamiltonian is sufficiently transparent and flexible to
be adopted to other twisted layered systems.
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As mentioned above, none of the computational approaches
used so far to describe TBLG and the role of the magic angle has
succeeded in reproducing all aspects of the observed data [4,5].
An elegant description of TBLG using the continuum model
and treatment of the interlayer hopping in Fourier space has
been introduced in Ref. [6], but did not find gaps in the
electronic spectrum in the range of twist angles θ investigated.
The follow-up paper by the same authors [8] did find the magic
angle θm,1≈1.1◦ and both band gaps. However, the band gap
dependence on the twist angle disagrees with more recent
experimental data [4], likely due to an inaccurate description
of the interlayer interaction [17]. The magic angle was first
predicted in the theoretical Ref. [7], which also used the
continuum model and treated the interlayer hopping in Fourier
space using experimentally obtained parameters. The authors
discussed the occurrence of a flat band at θm,1, but did not
discuss band gaps near EF . A separate calculation using the
same approach [7] reproduced only one gap below EF . No
band gaps were found near EF in the follow-up study [12]
based completely on ab initio density functional theory (DFT).
The continuum model and Fourier space treatment were
abandoned in a detailed DFT study of Ref. [14] applied to
commensurate structures. The DFT results, obtained using
maximally localized Wannier functions, were mapped onto
a tight-binding Hamiltonian with 18 parameters, which was
diagonalized directly in the large Moiré supercells. Even
though this approach reproduces the band flattening at the
magic angle, the authors reported only one band gap above
EF . Two related approaches have been introduced to determine
the electronic spectrum using maximally localized Wannier
states, one based on the tight-binding [18] and the other on the
Hubbard model [19]. The latter approach [19] is an extension
of the initial tight-binding description of TBLG in terms of
Vppπ intralayer and Vppσ interlayer two-center hopping inte-
grals [11]. Whereas the initial report [11] found band gaps only
for large twist angles beyond θm,1, a follow-up study using the
same approach [15] reported crossing flat bands at the charge
neutrality point, in contrast to the observed sharp resistance
increase [4], and claimed that the band gap opening at θm,1

is caused by lattice relaxation. The necessity to determine
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lattice relaxation to reproduce experimental observations is
computationally extremely demanding [19] and thus limits the
size of the Moiré supercells in the commensurate structure,
making predictions of higher magic angles extremely difficult.
All reported theoretical results suggest that the low-energy
electronic structure of TBLG near θm,1 is rather sensitive to
the model description and the parameters.

We combined the most attractive aspects of the above
theoretical approaches in a minimum model that is consistent
with experimental data [4,5]. The Hamiltonian we propose for
any graphitic system consists of an intralayer part H‖ and
an interlayer part H⊥. The description we chose combines
simplicity and transparency with the benefits of previously
used models while avoiding their different shortcomings. This
Hamiltonian reads

H = H‖ + H⊥

= −
∑
i �=j

m

γ mm
ij (c†m,icm,j + H.c.)

−
∑

i,j

m

γ
m,m+1
ij (c†m,icm+1,j + H.c.). (1)

Here, c
†
m,i is the creation and cm,i is the annihilation operator

of a pz state at the atomic site i in layer m, with m = 1 or 2
for BLG. γ mm

ij is the in-plane hopping integral between sites i

and j .
Typically, only nearest-neighbor intralayer hopping is con-

sidered in H‖. γ mm
〈ij〉 = V 0

ppπ = 3.09 eV reproduces the Fermi
velocity [3] vF ≈1×106 m/s in the graphene layer spanned
by lattice vectors a1 and a2, shown in Fig. 1(a), with |a1| =
|a2| = a. The corresponding reciprocal lattice vectors b1 and
b2, defining the BZ of the layer, are shown in Fig. 1(b).

To describe the interlayer interaction in H⊥, we first
considered an AB-stacked untwisted BLG, as illustrated in
Fig. 1(c). We first consider two atoms atop each other in
adjacent layers, at the positions r1,i and r2,i, separated by the
interlayer distance d0. The interlayer hopping integral between
these atoms is t (0) = γ

1,2
ii = V 0

ppσ . Next, we consider one of
the atoms moving within the layer, so that the mutual distance
vector, projected on one of the layers, becomes |r| = r > 0.
For r not very large, the dominant interlayer hopping integral
is still Vppσ , scaled by the distance and corrected for the cosine
of the tilting angle [11]. It is isotropic and can be written as

t (r ) = V 0
ppσ e−(

√
r2+d2

0 −d0 )/λ d2
0

r2 + d2
0

, (2)

where λ modulates the cutoff of t (r ) at large distances.
This expression allows a flexible description of the interlayer
interaction in regions of local AA and AB stacking as well as
in-between.

Precise observations for AB-stacked untwisted BLG pro-
vided accurate values a = 2.46 Å, d0 = 3.35 Å, and V 0

ppσ =
0.39 eV = γ1 in standard graphite notation. Using λ = 0.27 Å,
we could furthermore reproduce the well-established band
structure of AA- and AB-stacked BLG. This value of λ also
yielded γ3 = γ4 = 0.11 eV for neighbors in adjacent layers
with r = a/

√
3 in very good agreement with experimental

data [20–22]. All parameters needed to reproduce the elec-

FIG. 1. Schematic structure of TBLG. (a) Moiré superlattice
formed by placing layer 2 (red), twisted by θ , on top of layer 1 (blue).
The lattice vectors a1 and a2, also shown in the enlarged inset, span
the Bravais lattice of layer 1. The primed quantities correspond to
layer 2, and the superscript (s ) identifies the Moiré superlattice. (b)
Large Brillouin zone of layer 1 (blue), spanned by b1 and b2, and
of the twisted layer 2 (red), spanned by b′

1 and b′
2. The inequivalent

Dirac points K and K ′ are in the corners of the hexagonal unit cells
of the individual layers. The small hexagonal Brillouin zones tiling
the reciprocal space are spanned by b(s)

1 and b(s)
2 . (c) Definition of

interatomic distances in adjacent layers separated by d0 in perspective
side view. (d) Brillouin zones in the reciprocal lattice of layer 1.

tronic structure of MLG, BLG, graphite, and TBLG are listed
in Table I. As we will show, Hamiltonian (1) also reproduces the
magic angle θm,1≈1.1◦, band flattening without band overlap
at EF , opening of two gaps, one below and one above EF , and
band gap reduction for twist angles deviating from θm,1.

In the following, we will describe a TBLG initially formed
as an AA-stacked BLG, where the top layer 2 has been twisted
counterclockwise by the angle θ with respect to the bottom
layer 1, as seen in the top view in Fig. 1(a). The honeycomb
lattice of a graphene layer consists of a triangular Bravais
lattice with a two-atom basis. The vectors spanning the Bravais
lattice of the bottom layer 1 are a1 = a(

√
3/2,−1/2) and

a2 = a(
√

3/2, 1/2) in Cartesian coordinates. The positions
of the two basis atoms A and B in the unit cell, which
form the sublattices A and B, are τA = (a1 + a2)/3 and τB =
2(a1 + a2)/3. The Bravais lattice vectors spanning the twisted
upper layer 2 are a′

1 and a′
2 and the basis vectors spanning the

TABLE I. Band-structure parameters of graphitic systems.

Quantity a d0 V 0
ppπ V 0

ppσ λ

Value 2.46 Å 3.35 Å 3.09 eV 0.39 eV 0.27 Å
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sublattices are τ ′
α . The reciprocal lattice of the bottom layer 1,

spanned by b1 and b2, is shown in Fig. 1(d).
For commensurate TBLG lattices, we can use the index

(M,N ) to define the twist angle θ and the Moiré supercell [14].
Incommensurate lattices can still be approximated by a com-
mensurate lattice with a specific index (M ′, N ′) and θ ′≈θ ,
albeit with possibly very large supercells. The reciprocal lattice
of the (N + 1, N ) TBLG with a small twist angle, shown
in Fig. 1(b), is spanned by the vectors b(s)

1 = b2 − b′
2, and

b(s)
2 = (b′

1 + b′
2) − (b1 + b2), where bi and b′

i with i = 1, 2
are reciprocal lattice vectors of the bottom and the top layer,
respectively.

In the following, we will focus on a TBLG lattice with
small twist angles near the observed magic angle θm,1≈1.1◦.
Whether commensurate or incommensurate, such a lattice can
be described or approximated by a commensurate lattice with
a large Moiré supercell and the electronic structure can be
obtained to a good accuracy using the continuum method. In
this approach, the low-energy wave functions can be expanded
in the Bloch basis of the bottom layer 1 and the twisted top
layer 2 near the Dirac point, which are defined as

|ψ1,α (k)〉 = 1√
N

∑
R

eik·(R+τα )|R + τα〉,
(3)

|ψ2,α (k)〉 = 1√
N

∑
R′

eik·(R′+τ ′
α )|R′ + τ ′

α〉.

Here, the index α denotes the A or B sublattice, and the
Wannier function |R + τα〉 is the pz orbital at that site. To
discuss the value range of k, we refer to Fig. 1(b) depicting
the large hexagonal Brillouin zone of layer 1 spanned by b1
and b2 and the counterparts for the twisted layer 2, and the
smaller Brillouin zones of the Moiré superlattice, spanned
by b(s)

1 and b(s)
2 . In the vicinity of the Dirac point K of

layer 1 and its counterpart in twisted layer 2, we can express
k = k(s) + k0 + G(s), where k(s) is a k-point in the supercell
BZ in the center of the BZ of the monolayers and k0 is the center
of one of the supercell BZs containing K of layer 1 in their
corners. G(s) is a reciprocal lattice vector of the superlattice,
given by G(s) = n1 b(s)

1 + n2 b(s)
2 with small integers n1 and n2

typically in the range −4�ni� + 4.
Defining k1 = k(s) + k0 + G1

(s) and k2 = k(s) + k0 +
G2

(s), the intralayer Hamilton matrix elements are given in
the Bloch basis by

〈ψm,α (k1)|H |ψm,β (k2)〉 = Hm,αβ (k1)δG1
(s),G2

(s) , (4)

with m = 1, 2 defining the layer and α the sublattice. The on-
site energy for both layers is set to be zero, so the diagonal
matrix elements of the Hamiltonian are Hm,αα (k) = 0. For the
two layers 1 and 2, the off-diagonal matrix elements of the
Hamiltonian are given by

H1,AB (k) = −V 0
ppπ

3∑
j=1

eik·ρj ,

(5)

H2,AB (k) = −V 0
ppπ

3∑
j=1

eik·ρ ′
j ,

FIG. 2. (a) The interlayer hopping integral t (r ), defined in Eq. (2),
and (b) its Fourier transform t̃ (k). The filled circles in (a) represent
possible r values in AB-stacked BLG. (c) Electronic density of states
(DOS) of TBLG near EF for different twist angles θ . The DOS for
θ = 0 represents an untwisted BLG. (d) The electronic band structure
of TBLG along high-symmetry lines of the Moiré superlattice (left)
and the corresponding DOS (right) for θ near the (first) magic angle
θm,1≈1.08◦. The red (dashed blue) lines represent bands with the
valley index K (K ′) defined in Fig. 1(d). The DOS below and above
EF is multiplied by 10. The BZ of the superlattice is shown as an inset
in the band structure.

where V 0
ppπ is the intralayer nearest-neighbor hopping term.

ρj are the vectors connecting sublattice A sites to their three
nearest neighbors in sublattice B in layer 1. ρ ′

j are the
corresponding nearest-neighbor vectors in the twisted layer 2.
The Hamiltonian is hermitian, so Hm,BA(k) = H ∗

m,AB (k) for
m = 1, 2.

To describe the interlayer coupling in an effective, approx-
imate way, we first consider the atomic distribution in a 2D
graphene layer to be continuous uniform. In that case, the 2D
Fourier transform of t (r) is given by

t̃ (k) =
∫

e−ik·rt (r)d2r. (6)

Since t (r) is isotropic, Eq. (6) can be transformed to a 1D
integral

t̃ (k) = 2π

∫ ∞

0
rt (r )J0(kr )dr, (7)

where J0 is a Bessel function and the Fourier transform is also
isotropic in the reciprocal space. The radial dependence of the
interlayer hopping integral t (r ) is shown in Fig. 2(a) and its
Fourier transform t̃ (k) is shown in Fig. 2(b).

For TBLG with a small twist angle, where the continuum
model is justified, the interlayer Hamilton matrix elements can
be evaluated and expanded in the reciprocal space as [7]

〈ψ1,α (k1)|H |ψ2,β (k2)〉

=
∑

G

t̃ (k1 + G)

�
ei(G·τα−G·τβ )δk2−k1,G−G′ . (8)

Here, G are reciprocal lattice vectors of the untwisted graphene
layer 1, G′ are the corresponding vectors of the twisted layer 2,
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FIG. 3. Electronic structure of TBLG near the magic angle θm,1 ≈ 1.1◦. (a) Schematic electronic structure near the charge neutrality point.
The flat band splits into two narrow valence bands of width Wv and two narrow conduction bands of width Wc. A band gap of width �h opens
on the hole side below EF and a gap of width �e opens on the electron side above EF . (b) Wv and Wc as a function of the twist angle θ . (c) �h

and �e as a function of θ .

and � is the area of the graphene unit cell. k1 and k2 have
been defined earlier for use in the intralayer Hamilton matrix
elements in Eq. (4).

In the expansion over the reciprocal lattice of layer 1,
we found that 27 G vectors, indicated by orange circles in
Fig. 1(d), are necessary to reach convergence of the electronic
structure due to the larger extent of the Fourier-transformed
interlayer hopping integral t̃ (k) associated with our small
value of λ. In previous studies [6,7], only three small G
vectors have been used for the expansion in Eq. (8). Even
in this restricted expansion, the authors probed the relevant
part of reciprocal space near the Dirac point K, since
|K + G| is close to |K|. In the expansion of TBLG wave
functions, we use a 9×9 grid of G(s) vectors for each value
of k(s).

Recent observations [4,5] suggest that the (first) magic
angle in TBLG, accompanied by a band flattening and a sharp
resistance increase at the charge neutrality point, caused by
vanishing band overlap, occurs at θm,1≈1.08◦. Even though
the magic angle structure is likely incommensurate, nearby
twist angle values may be obtained considering commensurate
TBLGs with index (N + 1, N ). Since the BZ collapses to
zero in incommensurate structures, only the DOS and not the
band structure can be provided. The DOS of TBLG with θ

in the range from 0◦ to 2◦, with emphasis on the first magic
angle θm,1, is shown in Fig. 2(c) and as a movie in the
Supplemental Material [23]. Also presented in the Supple-
mental Material [23] is the calculated DOS near the second
magic angle θm,2≈0.47◦ and the third magic angle θm,3≈0.28◦.
These values agree well with previously reported values [7]
θm,2≈0.50◦ and θm,3≈0.35◦. The incommensurate structure
with the magic angle θm,1 can be approximated by a TBLG
with index (31,30) and twist angle θ = 1.084 55◦. For this
commensurate structure, we present both the band structure
E(k) and the DOS in Fig. 2(d). We notice that at θm,1, the flat
band splits into valence and conduction subbands originating
from K and K ′ valleys shown in Fig. 1(b). These bands do
not overlap at θm,1, providing an explanation for the sharp
resistance increase at the charge neutrality point.

The TBLG DOS near θm,1 is shown schematically in
Fig. 3(a). Below EF , two flat valence bands of width Wv

are separated by a hole gap of width �h from lower-lying
occupied states. Above EF , two flat conduction bands of width

Wc are separated by an electron gap of width �e from higher
occupied states. As seen in Figs. 3(b) and 3(c), the minimum
values Wv and Wc with the bands not overlapping and no gaps
above or below EF occur near θm,1. According to Fig. 3(c),
even a small increase of θ beyond θm,1 opens gaps above
and below the flat band. Even though �h > �e in general,
both gaps decrease in size with increasing value of θ and
eventually close for θ � 1.7◦. As seen in Fig. 2(c), the DOS of
TBLG with θ = 2◦ shows no indication of any band gap or a
flat band.

In our minimum description, all parameters listed in Table I
have well-established values based on experimental observa-
tion. The only variable that required a judicious choice was
that of the decay length λ. At θm,1, the minimum values of
Wv and Wc and thus the minimum width of the flat band
Wf b ≈ 1.9 meV was obtained using λ = 0.21 Å. In this case,
overlap of the narrow valence and conduction bands along
the G(s) − M (s) direction yielded a rather large DOS at EF ,
which is inconsistent with the observed high resistance at the
neutrality point. We found Wf b to increase for both λ < 0.21 Å
and λ > 0.21 Å. The narrowest flat band with Wf b ≈ 4.7 meV
and no overlap between the flat valence and conduction bands
occurred for λ = 0.27 Å. This value has been used throughout
our study.

In conclusion, we introduced a minimum tight-binding
Hamiltonian with only three parameters extracted from
graphene and untwisted bilayer graphene. We found that this
Hamiltonian reproduces quantitatively the electronic structure
of not only these two systems and bulk graphite near the Fermi
level, but also that of twisted bilayer graphene including the
value of the first magic angle, at which bands at EF flatten
without overlap and two gaps open, one above and one below
EF . Our approach also predicts the second and third magic
angle. The Hamiltonian is sufficiently transparent and flexible
to be adopted to other twisted layered systems.
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