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a b s t r a c t

We use continuum elasticity theory to revise scaling laws for radial breathing-like and shear-like vi-
bration modes in quasi-2D nanostructures including finite-width nanoribbons and finite-size thin cir-
cular discs. Such modes can be observed spectroscopically in corresponding nanostructures of graphene
and phosphorene and can be determined numerically by atomistic ab initio density functional theory and
classical force-field calculation. The revised scaling laws differ from previously used expressions, some of
which display an unphysical asymptotic behavior. Apart from model assumptions describing the effect of
edge termination, the continuum scaling laws have no adjustable parameters and display correct
asymptotic behavior. These scaling laws yield excellent agreement with experimental and numerical
results for vibration frequencies in both isotropic and anisotropic structures as well as useful expressions
for the frequency dependence on structure size and edge termination.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Well-defined nanostructures of carbon and other elements,
including the C60 buckyball [1] and other fullerenes, carbon nano-
tubes [2], and graphene nanoribbons [3] have been produced with
atomic-scale precision [4]. Resonant Raman spectroscopy has
emerged as the most powerful method to identify and characterize
each of these nanostructures within a sample. There are extensive
theoretical and experimental studies [5e8] that relate the fre-
quency uRBM of the radial breathing mode (RBM) of carbon fuller-
enes and nanotubes to their diameter. In turn, the diameter of these
nanostructures can be inferred from Raman spectra.

For finite-width 2D nanoribbons, several theoretical studies
utilized time-consuming atomistic total energy calculations and
translated frequency results to frequency-width scaling laws
[9e12] that displayed an unphysical asymptotic behavior for wide
nanoribbons. Other studies [13e15] obtained the correct asymp-
totic behavior for wide nanoribbons using the Brillouin zone
folding approach, but could not find agreement with experimental
k).
data in narrow nanoribbons.
With precision rivaling that of ab initio calculations at much

lower computational effort, RBM frequencies of near-spherical
fullerenes and cylindrical nanotubes have been obtained by rep-
resenting these nanostructures by elastic membranes characterized
by 2D elastic constants [16]. In the standard Voigt notation, adapted
to a 2D solid [16], these yield

uCn
¼2
d

ffiffiffiffiffiffiffiffiffiffi
2c11
r2D

s
; (1)

for the RBM frequency of a spherical Cn fullerene with diameter d.
Similarly, the RBM frequency of a carbon nanotube (CNT) of radius
d is given by

uCNT ¼
2
d

ffiffiffiffiffiffiffiffi
c11
r2D

r
: (2)

The planar counterpart of a cylindrical CNT is an infinite, planar
nanoribbon of width W. In analogy, planar circular nanodiscs of
radius R are planar counterparts of spherical fullerenes.

Here we present continuum elasticity theory results that
translate into revised scaling laws for radial breathing-like and
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shear-like vibration modes in quasi-2D nanostructures including
finite-width nanoribbons and finite-size thin circular discs. Such
modes have been observed spectroscopically in corresponding
nanostructures of graphene and phosphorene and can be deter-
mined numerically by atomistic ab initio density functional theory
and classical force-field calculation. The revised scaling laws differ
from previously used expressions, some of which display an
unphysical asymptotic behavior inwide nanostructures. Apart from
model assumptions describing the effect of edge termination, the
continuum scaling laws have no adjustable parameters and display
correct asymptotic behavior. These scaling laws yield excellent
agreement with experimental and numerical results for vibration
frequencies in both isotropic and anisotropic structures as well as
useful expressions for the frequency dependence on structure size
and edge termination.
2. Analytical scaling laws

2.1. Expressions for breathing-like and shear-like modes of
nanoribbons

Let us first consider an infinitely long nanoribbon of width W
and 2D mass density r2D, represented in Fig. 1 (a), which is free of
tensile strain energy. To obtain an expression for the in-plane radial
breathing-like mode (RBLM), we first consider two longitudinal
acoustic (LA) waves propagating in opposite direction within an
infinite layer with velocity v ¼u=k, producing a standingwavewith
l ¼ 2p=k as interference pattern. This pattern is an array of infi-
nitely long strips, separated by stress nodal lines l= 2 apart. Cutting
the plane along adjacent stress nodal lines of the standing wave,
which are immobile in the plane, will produce a ribbon of finite
width W ¼ l=2 that will vibrate with the same frequency u if edge
effects can be ignored. 2D continuum elasticity theory calculations
provide the expression [16].

uLAðkÞ¼
ffiffiffiffiffiffiffiffi
c11
r2D

r
k (3)

for the LA mode of the infinite layer corresponding to the in-plane
breathing-like mode of a nanoribbon. Substituting k ¼ 2p= l ¼ 2p=
ð2WÞ from above in Eq. (3), we obtain
Fig. 1. In-plane breathing-like and shear-like modes of an infinite planar nanoribbon of bare
the W-dependence of the radial breathing-like mode frequency uRBLM and the shear-like
continuum elasticity and atomistic approaches. (c) Continuum elasticity results for the W-de
1 or the harder direction 2. Experimental data are reproduced from Refs. [4,17e23]. (A colo
uRBLM;0 ¼
p

W

ffiffiffiffiffiffiffiffi
c11
r2D

r
(4)

for the RBLM frequency uRBLM;0 that ignores any edge effects. A
similar expression has been derived previously [13e15] using the
Brillouin zone folding approach based on the phonon spectrum of
an infinite monolayer. In an anisotropic material, c11 has to be
replaced by the elastic constant associated with the direction
normal to the nanoribbon axis.

In nanoribbons with bare edges, the width W is defined by the
distance between atoms at opposite edges. Most experiments,
however, are performed not on bare, but rather chemically termi-
nated nanoribbons. Chemical functionalization, such as H- or OH-
termination of graphene edges, changes the elastic response at the
edge. More important, it effectively increases thewidthW andmass
of the nanoribbon by a constant amount per length of the nano-
ribbon. Both latter effects lower the frequency of the RBLM mode
and can be accommodated by effectively increasing the bare width
W by dW in Eq. (4). The value of dW will represent changes in the
edge regionwith respect to the nanoribbonmaterial. dW should not
change when the nanoribbon width changes.

In view of these considerations, the scaling law of Eq. (4) should
be modified to

uRBLM ¼ cRBLM
W þ dW

(5)

with cRBLM ¼p

ffiffiffiffiffiffiffiffi
c11
r2D

r
;

where edge effects are described by dW as the only adjustable
parameter. The effect of specific edge terminations on uRBLM will be
discussed later on.

We note that the functional dependence of uRBLM on the
nanoribbon width W in Eq. (5) differs significantly from the pre-
viously used expression [9e11] uRBLM ¼ a=

ffiffiffiffiffiffi
W

p þ b, where az1:6�
103 cm�1 Å1/2 and bz� 2� 102 cm�1 have been obtained by nu-
merical fits to observed and calculated frequencies for a finite range
of widths, with the asymptotic behavior uRBLMz� 2� 102 cm�1

for W/∞. An alternative expression [12] uRBLM ¼ c=W þ d=
ffiffiffiffiffiffi
W

p
þ

width W. (a) Schematic of the deformations considered here. (b) Numerical results for
mode (SLM) frequency uSLM in armchair graphene nanoribbons (aGNRs) using the

pendence of uRBLM and uSLM in phosphorene nanoribbons cut along the softer direction
ur version of this figure can be viewed online.)
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e, with cz1:6� 103 cm�1 Å, dz4� 102 cm�1 Å1/2 and e ¼ � 10
cm�1, has been proposed subsequently for an extended range of
nanoribbon widths, with the asymptotic behavior uRBLM ¼ � 10
cm�1 for W/∞. The asymptotic behavior is clearly incorrect in
both expressions, since it should approach zero for W/ ∞. Com-
parison of the dependence of uRBLM using the different expressions
is provided in the Supplemental Material (SM) [24].

Similar to Eqs. (4) and (5) for the RBLM of a nanoribbon, we can
describe the shear-like mode (SLM) frequency of the same nano-
ribbon by [16].

uSLM;0 ¼
p

W

ffiffiffiffiffiffiffiffi
c66
r2D

r
(6)

in analogy to the in-plane transverse acoustic (TA) mode in the
infinite layer.

We describe the effect of edge termination on the SLMmodes in
the same way as on the RBLM mode in the expression

uSLM ¼ cSLM
W þ dW

;

cSLM ¼ p

ffiffiffiffiffiffiffiffi
c66
r2D

r
:

(7)

The value of dW is the same as in Eq. (5). The effect of specific
edge terminations on uSLM will be discussed later on.
Fig. 2. In-plane deformation of a finite-size planar flake in the initial shape of a square
of side length L for an (a) isotropic and (b) anisotropic material. (c) Schematic radial
motion in a thin circular disc of radius R and a ball-and-stick representation of a
graphene disc. (d) Continuum elasticity results for the R-dependence of uRBM in a
graphene disc with H-terminated edges. The data points are results of atomistic cal-
culations using the REBOII [25] force-field. (A colour version of this figure can be
viewed online.)
2.2. Expression for the in-plane breathing mode of thin circular
discs based on 2D continuum elasticity theory

Continuum elasticity theory allows to calculate the frequency of
the radial breathing mode uRBM of a solid sphere of radius R, con-
sisting of a uniform, isotropic material of mass density r, with the
help of elastic constants Cij, including the related bulkmodulus B. In
a similar way, the 2D bulk modulus g and other 2D elastic constants
cij should provide a useful expression for uRBM of a massive circular
disc of radius R and mass density r2D, which could be measured by
Raman spectroscopy. While uRBM depends independently on both
c11 and c12, it is particularly sensitive to the 2D bulk modulus g ¼
ðc11 þc12Þ=2 described below.

Extensive atomistic calculations of the 2D bulk modulus g of
graphene and a number of other isotropic quasi-2D solids have
been reported previously [26]. The 2D bulk modulus, also known as
“membrane stretching modulus” or “area-stretching elastic con-
stant”, is a measure of the elastic resistance of a 2D solid to change
in the area under isotropic line force F applied in the two in-plane
directions. We found one available expression for g, published in
Ref. [26], to be incorrect, apparently due to the faulty assumption
that an isotropic stress results in an isotropic strain. In the following
we derive the correct expression for the 2D bulk modulus g of an
anisotropic solid.
2.2.1. Continuum elasticity expression for the 2D bulk modulus of
an anisotropic material

Consider a finite-size square object that is cut out of a generally
anisotropic 2D solid and subject to uniform tensile stress P ¼
s11 ¼ s22 in the in-plane directions, as shown in Fig. 2. The stress
P ¼ F=L, caused by an external force F acting on side length L, is the
2D counterpart of uniform pressure, and causes a fractional change
in area, or areal strain dA=A ¼ ε11 þ ε22. There are no shear stresses,
and any shear strain ε12 does not contribute to a change in the area,
and so is not shown in Fig. 2. In the standard Voigt notation,
adapted to a 2D solid [16], the stress-strain relationship takes the
form
0
@ ε11

ε22
ε12

1
A¼

0
@ s11 s12 s16

s12 s22 s26
s16 s26 s66

1
A
0
@ P

P
0

1
A; (8)

where sij are the 2D compliance constants, which form a symmetric
matrix. It follows that the areal extensibility k, the 2D counterpart
of 3D compressibility, is given by

k¼ dA
A
,
1
P
¼ ε11 þ ε22

P
¼ s11 þ s22 þ 2s12 : (9)

The 2D bulk modulus g is the inverse of the extensibility, so that

g¼1
k
¼ 1

s11 þ s22 þ 2s12
: (10)

For 2D structures, the elastic stiffness constants cij are in more
common use than the compliance constants [16], so it is useful to be
able to express the bulk modulus in terms of stiffness constants. In
principle this is straightforward since the stiffness and compliance
matrices are the inverse of each other. For general anisotropy, nu-
merical inversion seems the most viable option. Of more practical
importance, for square, hexagonal and rectangular structures,
s16 ¼ s26 ¼ 0 and c16 ¼ c26 ¼ 0, and the required inverted compli-
ance constants are readily obtained as
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s11 ¼ c22
c11c22 � c212

;

s12 ¼ �c12
c11c22 � c212

;

s22 ¼ c11
c11c22 � c212

:

(11)

Inserting these expressions in Eq. (10), one arrives at

g¼ c11c22 � c212
c11 þ c22 � 2c12

: (12)

For an isotropic solid with c11 ¼ c22, Eq. (12) reduces to

g¼1
2
ðc11 þ c12Þ : (13)

2.2.2. Continuum elasticity description of in-plane vibrations in
circular discs

In-plane vibrations of circular discs have been extensively dis-
cussed in the literature, including Ref. [27] and references cited
therein. The fundamental frequency is readily obtained from the
equation for the radial modes of an isotropic cylinder, which can be
found e.g. in Rose’s book [28]. Setting k along the axis to zero and
dividing the right-hand side by 2, the cylinder equation reduces to

J1

�
uRBMR
vLA

�
¼
 
uRBMRvLA

2v2TA

!
J0

�
uRBMR
vLA

�
; (14)

where J0 and J1 are Bessel functions and R is the radius of the cyl-
inder. This equation applies equally to the radial modes of a thin
disc, requiring only that vLA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c11=r2D
p

be treated as the 2D lon-

gitudinal acoustic velocity and vTA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c66=r2D

p
as the transverse

acoustic velocity. Remembering that c66 ¼ ðc11 �c12Þ=2 in an
isotropic 2D material [16] we consider here, we can further define
x ¼ uRBMR=vLA and rewrite Eq. (14) as

J1ðxÞ¼CxJ0ðxÞ : (15)

Here, C ¼ c11=ð2gÞðc11 þc12Þ=ðc11 �c12Þ ¼ c11=ðc11 �c12Þ is a
constant depending on the elastic constants of the material. Ac-
cording to its definition, the root of Eq. (15) is related to the
fundamental frequency of a circular isotropic disc by x ¼
uRBMR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2D=c11

p
, so that

uRBM ¼ x
R

ffiffiffiffiffiffiffiffi
c11
r2D

r
: (16)

The general solution of Eq. (15) has to be obtained numerically
for a given material and provides both the fundamental frequency
and the overtones.

In the following, we will apply the above expressions for the
different vibration mode frequencies to specific nanostructures, in
particular nanoribbons and thin circular discs formed of 2D gra-
phene and phosphorene.
Fig. 3. Effect of edge termination on vibration modes in GNRs. Results for (a) uRBLM

and (b) uSLM obtained using Eq. (5) are presented for edge termination by either lighter
H- or heavier eOH groups. (A colour version of this figure can be viewed online.)
3. Numerical results for specific materials and structures

3.1. Nanoribbons of graphene and phosphorene

Our results for uRBLM and uSLM for armchair graphene nano-
ribbons (aGNRs) are presented in Fig. 1(b). Graphene is isotropic
and characterized by [16] c11 ¼ c22 ¼ 352:6 N/m, c12 ¼ 59:6 N/m,
c66 ¼ 146:5 N/m, and r2D ¼ 0:743� 10�6 kg/m2. The width of bare
N-aGNRs is given by Ref. [3] W ¼ ðN�1Þ � 1:23 Å and the width of
N-zGNRs with a zigzag edge is given by W ¼ ð2:13N�1:42Þ Å.

Whereas bare edges are known to reconstruct and change their
elastic response, chemical termination adds width and mass to the
edge. Graphene edges are often terminated by H- or OH- groups in
aqueous environment [29]. Considering only the width change in
case of hydrogen-terminated GNRs, we may expect dWz2:2 Å in
view of the typical CeH bond length of 1.1 Å at the edges. As seen in
Fig. 3, we found that all data for uRBLM in H-terminated GNRs,
whether obtained spectroscopically or by atomistic calculations,
could be reproduced accurately by continuum elasticity theory Eqs.
(5) and (7) using the value dW ¼ 1:8 Å for H-termination, which
agrees in the order of magnitude with our estimate. For OH-
terminated edges, continuum elasticity calculations using
dW ¼ 5:5 Å reproduce well numerical results for uRBLM and uSLM as
seen in Fig. 3. Clearly, the higher mass of the OH- termination is
reflected in a larger value of dW . Due to the isotropy of graphene,
the vibration frequencies are the same for armchair and zigzag
nanoribbons of the same width, as confirmed by results of our
atomistic calculations presented in Fig. 1(b).

Unlike graphene, phosphorene is anisotropic and characterized
by [16] c11 ¼ 24:4 N/m, c22 ¼ 94:6 N/m, c12 ¼ 7:9 N/m, c66 ¼ 22:1
N/m, and r2D ¼ 1:34� 10�6 kg/m2. This anisotropy is reflected in
our results for uRBLM and uSLM for armchair and zigzag phosphor-
ene nanoribbons, presented in Fig. 1(c).
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3.2. Thin circular discs of graphene

Using Eq. (13) for isotropic media and the above-
mentioned elastic constants for graphene [16], we obtain
the value g ¼ 206:1 N/m for the 2D bulk modulus of graphene,
in agreement with previously published results [26]. With
C ¼ c11=ðc11 � c12Þ ¼ 352:6=ð352:6 � 59:6Þ ¼ 1:203, the so-
lution of Eq. (15) is x ¼ 1:963. The dependence of the
fundamental frequency uRBM in thin circular discs on their
radius R is then given by Eq. (16) and presented in Fig. 2(d).
Atomic displacements during the radial breathing modes of
these discs are displayed in the SM [24].

Results of atomistic calculations for hydrogen-terminated discs
based on DFT and the REBOII force field [25] are compared to
continuum results in Fig. 2(d). General agreement between con-
tinuum and atomistic results provides strong support for the uni-
versal nature of Eq. (16) to correctly represent uRBM of thin circular
discs. Similar to bare and chemically terminated nanoribbons, the
narrow region near the edge is not represented well by continuum
elasticity theory due to changes in width, mass distribution and
local elastic behavior. Like in the case of nanoribbons, we accom-
modate these effects in a single parameter dR that modifies the
radius R of the thin circular disc. We found good agreement be-
tween atomistic and continuum results using dR ¼ 0:9 Å and note
that this value agrees with dW=2 used earlier for hydrogen-
terminated nanoribbons.

4. Discussion

We found the accuracy of the 2D elasticity approach and its
ability to correctly represent vibration modes down to the nano-
meter scale to be impressive, but not completely unexpected in
view of published results for acoustic, in particular flexural modes
of 2D materials and systems like carbon fullerenes and nanotubes
[16]. More important in our view is the fact that this approach
provides a physically motivated expression for RBLM and SLM
modes in nanoribbons in Eqs. (5) and (7), which differs from the
established form and does not suffer from an asymptotically
incorrect behavior for ultra-wide nanoribbons. In addition, by
relating the frequency to intrinsic elastic properties of the material,
the provided expressions offer a wide range of applicability for 2D
nanostructures of any layered material.

Furthermore, even though many 2D materials such as graphene
are isotropic, some are not, with black phosphorene being a notable
example. As seen in Fig. 1(c), the vibration frequencies of phos-
phorene nanoribbons depend sensitively on whether their edges
are along the zigzag or the armchair direction, and this behavior
can be described by the same continuum elasticity theory.

Chemical termination of edges poses, of course, a problem for
the continuum description of finite-size objects. Depending on the
termination type, the edge region will have a different mass dis-
tribution, different elastic behavior, and will add a nonzero width
dW to finite-size objects. We believe that the value of dW in
nanoribbons and the corresponding value dR ¼ dW=2 in thin cir-
cular discs, which we used in our study, describes adequately the
combined effect of elastic softening near the edge and, in case of
chemical termination, an increase of the width and mass of the
nanostructure. We should also note that the effect of chemical
termination should be different for terminating H-, O- and OH-
groups.

One of the chemical edge termination effects, namely the
addition of atomicmasses at the edge, can be treated analytically, as
shown in the Appendix. We find that in many cases, including
nanoribbons and thin circular discs, keeping dW and dR as an
adjustable parameter that is independent of W or R provides
satisfactory results especially for wide nanostructures. In systems,
where the termination size is similar to the size of the nano-object,
continuum elasticity treatment loses its justification.

Our calculations are all for natural normal modes of nano-
structures, whether nanoribbons or thin circular discs. We wish to
note that these vibrations differ from forced modes that may be
induced by applying strain in a particular way. A nanoribbon may
be stretched uniformly normal to its axis by applying constant 2D
tensile strain along the edges. Releasing this strain results in a soft
vibration mode with a frequency higher by the factor

ffiffiffiffiffiffi
12

p
=p than

the eigenmode described by Eq. (4). This reveals that this particular
forced mode is not an eigenmode, but rather a mixed mode of the
nanoribbon.
5. Summary and conclusions

We have used 2D continuum elasticity theory and atomistic
calculations to determine in-plane radial breathing-like and shear-
like vibration modes of low-dimensional nanostructures including
finite-width nanoribbons and finite-size thin circular discs of gra-
phene and phosphorene. These vibrations can be observed by
Raman spectroscopy and used to characterize the sample. Vibra-
tional modes are sensitive not only to shape and mass density, but
also to anisotropy in the elastic behavior. We have derived revised
scaling laws that differ from previously used expressions, some of
which display an unphysical asymptotic behavior in wide nano-
structures. Apart from model assumptions describing the effect of
edge termination, the continuum scaling laws have no adjustable
parameters and display correct asymptotic behavior. These scaling
laws yield excellent agreement with experimental and numerical
results for vibration frequencies in both isotropic and anisotropic
structures as well as useful expressions for the frequency depen-
dence on structure size and edge termination.
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6. Appendix

6.1. Description of Nanoribbons with Massive Edge Termination

An alternative way to describe the effect of edge termination is
to rigidly attach a line of constant mass density both edges. To see
its effect, let us first consider the nanoribbon of width W in Fig. 1
that lies in the x� y plane, with its axis aligned with the y� di-
rection. Breathing modes of the ribbon, which are LA waves with k
normal to the length of the ribbon, can be classified as symmetric or
anti-symmetric with respect to the midline of the ribbon. Both are
required to satisfy the wave equation for the medium and the
boundary conditions at the edges. In the case of symmetric modes,
for which the motions of mass elements in the nanoribbon are
related by uðx;tÞ ¼ � uð� x;tÞ, solutions of the wave equation take
the form
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uðx; tÞ¼A sinðkxÞeiut (A1)

with u and k ¼ jkj related by the dispersion relation

u¼
ffiffiffiffiffiffiffiffi
c11
r2D

r
k ; (A2)

which is identical to Eq. (3). In the case of antisymmetric modes for
which uðx;tÞ ¼ uð� x;tÞ, the form of the wave equation changes to

uðx; tÞ¼A cosðkxÞeiut (A3)

with the same dispersion relation (A2). We now consider a line of
constant mass density m representing mass per length to be rigidly
connected to the edges at x ¼ �W=2 and x ¼ þ W= 2.

To determine k and u, we have to impose the boundary
condition

sx

�
±
W
2

�
¼max ; (A4)

where sxð±W =2Þ is the tensile stress at ±W=2 and ax is the accel-
eration. This leads to

c11
vu
vx

¼ � m
v2u
vt2

(A5)

at the edges x ¼ ±W=2, where the negative sign indicates that the
stretch pulls the mass at the edge inward. Inserting expression (A1)
into Eq. (A5) for symmetric modes leads to

kc11 cos
�
k
W
2

�
¼mu2 sin

�
k
W
2

�
: (A6)

To eliminate the quantity k, we insert expression (A2) into Eq.
(A6) and obtain

uc11

ffiffiffiffiffiffiffiffi
r2D
c11

r
cos
�
u
W
2

ffiffiffiffiffiffiffiffi
r2D
c11

r �
¼mu2 sin

�
u
W
2

ffiffiffiffiffiffiffiffi
r2D
c11

r �
: (A7)

This can be simplified to the transcendental equation

tan
�
u
W
2

ffiffiffiffiffiffiffiffi
r2D
c11

r �
¼ c11
mu

ffiffiffiffiffiffiffiffi
r2D
c11

r
: (A8)

In the limiting case of no additional mass at the edge or m ¼ 0,
the right-hand side of Eq. (A8) diverges and the argument of the
tangent-function becomes p=2. The fundamental frequency is given
by

u
W
2

ffiffiffiffiffiffiffiffi
r2D
c11

r
¼p

2
; (A9)

which translates to Eq. (4) for uRBLM. In the limiting case of an
infinitely heavy edge with m/∞, the right-hand side of Eq. (A8)
vanishes. For the fundamental frequency we then obtain

u
W
2

ffiffiffiffiffiffiffiffi
r2D
c11

r
¼p : (A10)

The calculation for antisymmetric modes follows along similar
lines and yields

cot
�
u
W
2

ffiffiffiffiffiffiffiffi
r2D
c11

r �
¼ � c11

mu

ffiffiffiffiffiffiffiffi
r2D
c11

r
: (A11)

The limiting cases are m ¼ 0, described by Eq. (A10), and m/∞,
described by Eq. (A9).

Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.carbon.2019.10.041.
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