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I. COMPARISON BETWEEN SCALING LAWS
FOR THE RADIAL-LIKE BREATHING MODE IN

GRAPHENE NANORIBBONS

In the main manuscript, we have derived a scaling law
for ωRBLM as a function of nanoribbon width W based
on continuum elasticity theory for 2D systems

ωRBLM =
cRBLM

W + δW
(S1)

with cRBLM = π

√
c11
ρ2D

.

For graphene nanoribbons (GNRs), we use [1] c11 =
352.6 N/m, and ρ2D = 0.743×10−6 kg/m2. The effect of
edge termination, which may vary from sample to sam-
ple, is represented by the parameter δW . We found that
δW = 1.8 Å describes H-termination properly.

We note that the functional dependence of ωRBLM

on the nanoribbon width W in Eq. (S1) differs signif-
icantly from previously used scaling laws covering the
entire range from narrow to wide GNRs. Several authors
have used the expression [2–4]

ωRBLM =
a√
W

+ b . (S2)

The values of the parameters a and b for GNRs are very
similar in References 2–4. Parameters obtained from fits
to density functional theory (DFT) calculations of Ref. 3
are a = 1667.9 cm−1Å1/2 and b = −210.2 cm−1. With
these parameters, ωRBLM becomes negative and unphys-
ical in wide GRNs.

An alternative expression [5]

ωRBLM =
c

W
+

d√
W

+ e (S3)

has been proposed to alleviate the incorrect behavior of
ωRBLM in Eq. (S2) for wide GNRs. The parameters
used in Ref. 5 for GNRs are c = 1584.24 cm−1Å, d =
351.98 cm−1Å1/2 and e = −10.00 cm−1. Yet also with
this scaling law, ωRBLM eventually becomes negative in
ultra-wide GNRs.
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The dependence of ωRBLM in hydrogen-terminated
GNRs of width W , described by Eqs. (S1), (S2) and
(S3), is compared for different width ranges in Fig. S1
and experimental data.

As seen in Fig. S1(a), all expressions correctly predict
a monotonic decrease of ωRBLM with increasing GNR
width W in narrow GNRs. There is, however, a quanti-
tative difference of up to .20% between the results for
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Figure S1

5         10         15        20         25

600

500

400

300

200

100

0

ω
(c

m
-1

)

W (Å)

Eq. (S1):     cont. elasticity
Eq. (S2):     Ref. 3
Eq. (S3):     Ref. 5
Expt. Data: Refs. 6-13

ωRBLM

3

2

1

0

-1

Eq. (S1): cont. elasticity
Eq. (S3): Ref. 5

1400               1500                1600

ω
(c

m
-1

)

W (Å)

ωRBLM

FIG. S1. Dependence of ωRBLM on the GNR width W ac-
cording to expressions in Eqs. (S1), (S2) and (S3). Numerical
results are presented for W in the range of (a) 5 − 25 Å and
(b) 1400 Å−1600 Å.
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narrow GNRs with 5.W.25 Å. Experimental data [6–
13] agree best with the scaling laws in Eqs. (S1) and (S2).

Qualitative differences between the different ex-
pressions become more obvious in wide GNRs with
1400 Å.W.1600 Å according to Fig. S1(b). Whereas
ωRBLM remains positive and correctly approaches zero
for W→∞ according to Eq. (S1), the frequency becomes
negative for W > 63 Å according to Eq. (S2) and for
W > 1530 Å according to Eq. (S3). Asymptotically, for
W→∞, ωRBLM = −210.2 cm−1 according to Eq. (S2)
and ωRBLM = −10 cm−1 according to Eq. (S3).

A 1/W functional dependence of ωRBLM with the cor-
rect asymptotic behavior W→∞ has been discussed pre-
viously [5, 14–16] with the conclusion that it only may
reproduce observed data in ”not too narrow nanorib-
bons” [16]. We also note that the zone-folding approach
used in Refs. 14–16 can not easily accommodate edge ef-
fects in narrow GNRs. Among the proposed functional
dependencies of ωRBLM on W , only Eq. (S1) covers the
entire range from narrow to wide nanoribbons.

II. ATOMIC DISPLACEMENTS IN RADIAL
BREATHING MODES OF CIRCULAR

GRAPHENE DISCS

The structure of different hydrogen-terminated
graphene discs is represented by ball-and-stick models in
Fig. S2. The disc radius R is defined as the distance from
the center to the outermost carbon atom. We consider
two discs, identical to those described in Fig. 2(d) of
the main manuscript, and display a snapshot of the
atomic motion during the radial breathing mode. We
found no notable difference in the character of the
breathing modes between results obtained by DFT and
the REBOII force fields used in the main manuscript.

Figure S2
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FIG. S2. Atomic structure of hydrogen-terminated circular
graphene discs with the radii (a) R = 3.75 Å, (b) R = 6.20 Å.
Atomic motion during the radial breathing motion, based on
DFT calculations, is depicted by displacement vectors that
are shown by the red arrows.
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Christophe Raynaud, Andrew Fairbrother, Tim Dum-

http://dx.doi.org/10.1103/PhysRevB.94.165432
http://dx.doi.org/10.1103/PhysRevB.94.165432
http://dx.doi.org/ 10.1063/1.2800796
http://dx.doi.org/ 10.1063/1.2800796
http://dx.doi.org/10.1103/PhysRevB.78.195401
http://dx.doi.org/10.1103/PhysRevB.78.195401
http://dx.doi.org/ 10.1103/PhysRevB.77.054302
http://dx.doi.org/ 10.1103/PhysRevB.77.054302
http://dx.doi.org/ https://doi.org/10.1016/j.physleta.2008.10.059
http://dx.doi.org/ https://doi.org/10.1016/j.physleta.2008.10.059
https://doi.org/10.1038/nature09211
https://doi.org/10.1038/nature09211
http://dx.doi.org/10.1021/acs.nanolett.7b02938
https://arxiv.org/abs/1907.01797
http://dx.doi.org/10.1021/acsanm.9b00151
http://dx.doi.org/10.1021/acsanm.9b00151


3
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